精英家教网 > 高中数学 > 题目详情
8.已知$\overrightarrow a$=(-6,y),$\overrightarrow b$=(-2,1),且$\overrightarrow a$与$\overrightarrow b$共线,则y=(  )
A.-6B.6C.3D.-3

分析 由题意,两个向量共线,得到坐标的关系方程解之.

解答 解:$\overrightarrow a$=(-6,y),$\overrightarrow b$=(-2,1),且$\overrightarrow a$与$\overrightarrow b$共线,所以-2y=-6,则y=3;
故选:C.

点评 本题考查了平面向量共线的坐标关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.在△ABC中,($\frac{{\overrightarrow{AB}}}{{|{\overrightarrow{AB}}|}}$+$\frac{{\overrightarrow{AC}}}{{|{\overrightarrow{AC}}|}}$)•($\overrightarrow{AB}$-$\overrightarrow{AC}$)=0,|${\overrightarrow{AB}$+$\overrightarrow{AC}}$|=3,A∈[$\frac{π}{3}$,$\frac{5π}{6}$],则求$\overrightarrow{AB}$•$\overrightarrow{AC}$的最大值为(  )
A.3B.1C.$\frac{3}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x2-4x+1的图象与x轴交点的横坐标分别为x1,x2,则(  )
A.x1+x2=4B.x1x2=-2C.x1+x2=-4D.x1x2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_3}(x-1)}}$的定义域为(  )
A.[-3,2)∪(2,3]B.[3,+∞)C.(1,3]D.(1,2)∪(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$
(2)若$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,求向量$\overrightarrow{m}$、$\overrightarrow{n}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.运行如图所示的程序框图,将输出的a依次记作a1,a2,…,an,输出的b依次记作b1,b2,…,bn,输出的S依次记作S1,S2,…Sn(n∈N*).
(1)求数列{an}的通项公式;
(2)求$\frac{{{b_{n+1}}}}{{{a_{n+1}}}}$-$\frac{{1+{b_n}}}{a_n}$(n∈N*,n≤2014)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设A是三角形的一个内角且cos(π+A)=$\frac{{\sqrt{3}}}{2}$,那么cos($\frac{π}{2}$+A)的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的通项公式为an=-2n+p,数列{bn}的通项公式为bn=2n-4,设cn=$\left\{{\begin{array}{l}{a_n}&{{a_n}≥{b_n}}\\{{b_n}}&{{a_n}<{b_n}}\end{array}}$,若在数列{cn}中c6<cn(n∈N*,n≠6),则p的取值范围(  )
A.(11,25)B.(12,22)C.(12,17)D.(14,20)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=$\sqrt{2-4x}$+2$\sqrt{x+4}$的最大值为m,若正实数a,b满足a+b=m,则$\frac{4}{a}$+$\frac{9}{b}$的最小值为$\frac{25}{6}$.

查看答案和解析>>

同步练习册答案