精英家教网 > 高中数学 > 题目详情
11.“函数y=x3+3ax在x=1处的切线的斜率为6”是“直线x+y=0和直线x-ay=0互相垂直”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

分析 先根据导数的几何意义求出a的值,再根据两直线互相垂直求出a的值,再根据充要条件的定义判断即可.

解答 解:函数y=x3+3ax在x=1处的切线的斜率为6,
∴y′=3x2+3a,
∴3+3a=6,
解得a=1,
由直线x+y=0和直线x-ay=0互相垂直,
∴-a=-1,
解得a=1,
故“函数y=x3+3ax在x=1处的切线的斜率为6”是“直线x+y=0和直线x-ay=0互相垂直”的充要条件,
故选:C.

点评 本题考查必要条件、充分条件、充要条件的判断和应用,解题时要认真审题,仔细解答,注意合理地进行等价转化,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=(x+1)ln(x+1)-ax2-2ax(a∈R),它的导函数为f′(x).
(Ⅰ)若函数g(x)=f′(x)+(2a-1)x只有一个零点,求a的值;
(Ⅱ)是否存在实数a,使得关于x的不等式f(x)<0在(0,+∞)上恒成立?若存在,求a的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.给出下列命题:
(1)命题“在△ABC中,若A=30°,则sinA=$\frac{1}{2}$”的逆否命题为“在△ABC中,若sinA≠$\frac{1}{2}$则A≠30°”
(2)若p∧q为假命题,则p,q均为假命题
(3)?x∈R,sin2x+cos2x=1的否定为真命题
(4)已知命题p:函数y=ax-1+2(a>0且a≠1)的图象恒过一定点A,则点A的坐标为(1,2),
其中正确命题的序号为(1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数y=x2-4x+1的图象与x轴交点的横坐标分别为x1,x2,则(  )
A.x1+x2=4B.x1x2=-2C.x1+x2=-4D.x1x2=2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.sin(-$\frac{2π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=$\frac{{\sqrt{9-{x^2}}}}{{{{log}_3}(x-1)}}$的定义域为(  )
A.[-3,2)∪(2,3]B.[3,+∞)C.(1,3]D.(1,2)∪(2,3]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知平面向量$\overrightarrow{a}$=(3,4),$\overrightarrow{b}$=(9,x),$\overrightarrow{c}$=(4,y),且$\overrightarrow{a}$∥$\overrightarrow{b}$,$\overrightarrow{a}$⊥$\overrightarrow{c}$
(1)求$\overrightarrow{b}$与$\overrightarrow{c}$
(2)若$\overrightarrow{m}$=2$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{n}$=$\overrightarrow{a}$+$\overrightarrow{c}$,求向量$\overrightarrow{m}$、$\overrightarrow{n}$的夹角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设A是三角形的一个内角且cos(π+A)=$\frac{{\sqrt{3}}}{2}$,那么cos($\frac{π}{2}$+A)的值是(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$-\frac{1}{2}$D.$-\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正实数a,b满足$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,则a+b的取值范围是[$\sqrt{2}$+$\frac{1}{2}$,+∞).

查看答案和解析>>

同步练习册答案