分析 由题意可得a+b=$\frac{1}{2}$[(a+2)+(a+2b)]-1=$\frac{1}{2}$[(a+2)+(a+2b)]($\frac{2}{a+2}$+$\frac{1}{a+2b}$)-1,展开后运用基本不等式可得最小值,进而得到所求范围.
解答 解:由正实数a,b满足$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,
可得a+b=$\frac{1}{2}$[(a+2)+(a+2b)]-1=$\frac{1}{2}$[(a+2)+(a+2b)]($\frac{2}{a+2}$+$\frac{1}{a+2b}$)-1
=$\frac{1}{2}$[3+$\frac{2(a+2b)}{a+2}$+$\frac{a+2}{a+2b}$]-1≥$\frac{1}{2}$[3+2$\sqrt{\frac{2(a+2b)}{a+2}•\frac{a+2}{a+2b}}$]-1
=$\frac{1}{2}$(3+2$\sqrt{2}$)-1=$\sqrt{2}$+$\frac{1}{2}$.
当且仅当$\frac{2(a+2b)}{a+2}$=$\frac{a+2}{a+2b}$,即a=$\sqrt{2}$,b=$\frac{1}{2}$时,取得等号.
则a+b的取值范围是[$\sqrt{2}$+$\frac{1}{2}$,+∞).
故答案为:[$\sqrt{2}$+$\frac{1}{2}$,+∞).
点评 本题考查基本不等式的运用:求取值范围,注意运用变形和乘1法,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com