精英家教网 > 高中数学 > 题目详情
16.已知数列{an}中,a1=5,a2=2,an=2an-1+3an-2(n≥3).
(1)求证:数列{an+an-1}为等比数列
(2)求数列{n•an}的前2n项和T2n

分析 (1)由an=2an-1+3an-2(n≥3),变形为an+an-1=3(an-1+an-2),即可证明.
(2)由(1)可得:an+an-1=7×3n-2,同理可得:an-3an-1=(-1)n-1×13,联立解得an=$\frac{1}{4}$[3n-1×7+(-1)n-1×13].利用分组求和、“错位相减法”与等比数列的求和公式即可得出.

解答 (1)证明:∵an=2an-1+3an-2(n≥3),∴an+an-1=3(an-1+an-2),
∵a1+a2=7,∴数列{an+an-1}为等比数列,首项为7,公比为3.
(2)解:由(1)可得:an+an-1=7×3n-2
同理可得:an-3an-1=(-1)n-1×13.
联立解得an=$\frac{1}{4}$[3n-1×7+(-1)n-1×13].
∴T2n=a1+2a2+…+(2n-1)a2n-1+2na2n=$\frac{7}{4}$[1+2×3+…+(2n-1)×32n-2+2n×32n-1]+$\frac{13}{4}$[1+2×(-1)1+…+(2n-1)×(-1)2n-2+2n×(-1)2n-1],
利用“错位相减法”可得:T2n=$\frac{7+(28n-7)•{9}^{n}}{16}$-$\frac{13n}{4}$.

点评 本题考查了等比数列的通项公式及其求和公式、“错位相减法”、“分组求和”方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

6.sin(-$\frac{2π}{3}$)=(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.-$\frac{{\sqrt{3}}}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知数列2,$\frac{5}{3}$,$\frac{3}{2}$,$\frac{7}{5}$,$\frac{4}{3}$,…,则$\frac{17}{15}$是该数列中的第14项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数列{an}满足a1=1,a2=4,a3=9,an=an-1+an-2-an-3(n=4,5,…)则S2n=8n2-3n.(n∈N+

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.设集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},则集合A中满足条件
“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”元素个数为130.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知正实数a,b满足$\frac{2}{a+2}$+$\frac{1}{a+2b}$=1,则a+b的取值范围是[$\sqrt{2}$+$\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系中,O为坐标原点,A(1,1),B(2,0),|$\overrightarrow{OC}$|=1.
(1)求$\overrightarrow{OA}$与$\overrightarrow{OB}$夹角;
(2)若$\overrightarrow{OC}$与$\overrightarrow{OA}$垂直,求点C的坐标;
(3)求|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若两个等差数列{an},{bn}的前n项和分别为Sn,Tn对任意的n∈N*,都有$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n-1}{4n-3}$,则$\frac{{a}_{4}}{{b}_{2}+{b}_{6}}$的值是(  )
A.$\frac{23}{50}$B.$\frac{25}{49}$C.$\frac{13}{50}$D.$\frac{13}{25}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若平面向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-1,x),且$\overrightarrow{a}$∥$\overrightarrow{b}$,则x的值为(  )
A.2B.-2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

同步练习册答案