精英家教网 > 高中数学 > 题目详情
18.设f(x)=x2+bx+c且f(0)=f(2),则(  )
A.f(-2)<f(0)<f($\frac{3}{2}$)B.f($\frac{3}{2}$)<f(0)<f(-2)C.f($\frac{3}{2}$)<f(-2)<f(0)D.f(0)<f($\frac{3}{2}$)<f(-2)

分析 根据二次函数的对称轴和开口方向判断f(x)的单调性,根据二次函数的单调性得出结论.

解答 解:∵f(0)=f(2),
∴f(x)的对称轴为x=1,∴f($\frac{3}{2}$)=f($\frac{1}{2}$).
∵f(x)的图象开口向上,
∴f(x)在(-∞,1)上单调递减,
∵-2<0<$\frac{1}{2}$,
∴f(-2)>f(0)>f($\frac{1}{2}$)=f($\frac{3}{2}$),
故选B.

点评 本题考查了二次函数的单调性应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知x,y满足$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{x≥a}\end{array}\right.$,且z=2x-y的最大值与最小值的比值为-2,则a的值是$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若过点(1,2)总可以作两条直线与圆x2+y2+kx+2y+k2-15=0相切,则实数k的取值范围是(  )
A.k<-3或k>2B.-3<k<2C.k>2D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.安排6名志愿者去做3项不同的工作,每项工作需要2人,由于工作需要,A,B二人必须做同一项工作,C,D二人不能做同-项工作,那么不同的安棑方案有多少种.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的顶点B到左焦点F1的距离为2,离心率e=$\frac{{\sqrt{3}}}{2}$.
(1)求椭圆C的方程;
(2)若点A为椭圆C的右頂点,过点A作互相垂直的两条射线,与椭圆C分別交于不同的两点M,N(M,N不与左、右顶点重合),试判断直线MN是否过定点,若过定点,求出该定点的坐标; 若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.对于定义域为D的函数y=f(x),若同时满足下列条件:
①f(x)在D内单调递增或单调递减;
②存在区间[a,b]⊆D,使f(x)在[a,b]上的值域为[a,b];那么把y=f(x)(x∈D)叫闭函数.
(1)求闭函数y=-x3符合条件②的区间[a,b]
(2)判断函数f(x)=$\frac{x}{x+1}$是否为闭函数?并说明理由;
(3)若y=k+$\sqrt{x+2}$是闭函数,求实数k的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2-6x+8<0},B={x|(x-a)•(x-3a)<0}.
(1)若a=1,求A∩B;
(2)若A∩B=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数的定义域为D,若满足:①f(x)在D内是单调函数;②存在[a,b]上的值域为[$\frac{a}{2}$,$\frac{b}{2}$],那么就称函数y=f(x)为“半值函数”,若函数f(x)=logc(cx+t)(c>0,c≠1)是“半值函数”,则t的取值范围为(  )
A.(0,+∞)B.(-∞,$\frac{1}{4}$)C.($\frac{1}{4}$,+∞)D.(0,$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知全集U=R,集合A=$\{x|\frac{x-1}{x-4}≤0\}$,集合B为函数g(x)=3x+a的值域.
(1)若a=2,求A∪B和A∩(CUB);
(2)若A∪B=B,求a的取值范围.

查看答案和解析>>

同步练习册答案