精英家教网 > 高中数学 > 题目详情
12.在下列命题中,真命题的个数是(  )
①若直线a,b和平面α满足a∥α,b∥α,则a∥b.
②若直线l上有无数个点不在平面α内,则l∥α.
③若平面α⊥平面β,平面β⊥平面γ,则平面α∥平面γ.
④如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面β.
A.0B.1C.2D.3

分析 ①根据线面平行的判定定理和性质定理进行判断即可.
②根据线面平行的定义进行判断.
③根据面面垂直的性质定理进行判断.
④根据面面垂直的判定定理进行判断.

解答 解:①平行同一平面的两条直线不一定平行,故①错误,
②若直线l上有无数个点不在平面α内,则l∥α或l与α相交,故②错误
③垂直于同一平面的两个平面不一定平行,有可能相交,故③错误,
④命题的逆否命题为α内存在直线垂直平面β,则α⊥β,则逆否命题为真命题.则原命题为真命题,故④正确,
故正确的命题是④.
故选:B.

点评 本题主要考查命题的真假判断,根据空间直线和平面,平面和平面平行或垂直的判定定理以及性质定理是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若f(x)=cos$\frac{π}{6}$,则f′(x)等于(  )
A.$\frac{\sqrt{3}}{2}$B.0C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数g(x)=$\frac{2}{x}$+lnx,f(x)=mx-$\frac{m-2}{x}$-lnx,m∈R.
(1)求函数g(x)的单调区间和极值;
(2)若f(x)-g(x)在[1,+∞)上为单调函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}的公差d为整数,且ak=k2+2,a2k=(k+2)2,其中k为常数且k∈N*
(1)求k及an
(2)设a1>1,{an}的前n项和为Sn,等比数列{bn}的首项为l,公比为q(q>0),前n项和为Tn,若存在正整数m,使得$\frac{{S}_{2}}{{S}_{m}}={T}_{3}$,求q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设O是坐标原点,若直线l:y=x+b(b>0)与圆x2+y2=4交于不同的两点P1、P2,且$|{\overrightarrow{{P_1}{P_2}}}|≥|{\overrightarrow{O{P_1}}+\overrightarrow{O{P_2}}}|$,则实数b的最大值是(  )
A.$\sqrt{2}$B.2C.$\sqrt{6}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知曲线C:|x|+|y|=m(m>0).
(1)若m=1,则由曲线C围成的图形的面积是2;
(2)曲线C与椭圆$\frac{x^2}{9}+\frac{y^2}{4}=1$有四个不同的交点,则实数m的取值范围是2<m<3或$m=\sqrt{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.以正方体ABCD-A1B1C1D1的顶点D为坐标原点O,如图建立空间直角坐标系,则与$\overrightarrow{D{B_1}}$共线的向量的坐标可以是(  )
A.(2,-2,2)B.(-2,-2,2)C.(-2,2,2)D.(-2,-2,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知一个圆柱的底面半径为2,体积为16π,则该圆柱的母线长为4,表面积为24π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在三棱锥P-ABC中,AB=AC=PB=PC=10,PA=8,BC=12,点M在平面PBC内,且AM=7,设异面直线AM与BC所成角为α,则cosα的最大值为(  )
A.$\frac{1}{7}$B.$\frac{3}{7}$C.$\frac{6}{7}$D.$\frac{4\sqrt{3}}{7}$

查看答案和解析>>

同步练习册答案