分析 由已知及三角形面积公式可得S△ABC-S△BDC=2sinA(AC-BD),又由余弦定理整理可得:AC-BD=8cosA,可求S△ABC-S△BDC=8sin2A,结合范围A∈(0,$\frac{π}{2}$),利用正弦函数的图象和性质即可解得S△ABC-S△BDC的最大值为8.
解答 解:∵AB=CD=4,∠A+∠BDC=180°,可得∠A为锐角,
∴S△ABC-S△BDC=$\frac{1}{2}AB•AC•sinA$-$\frac{1}{2}BD•DC•sin∠BDC$=2sinA(AC-BD),
又∵由余弦定理可得:BC2=AB2+AC2-2•AB•AC•cosA=BD2+DC2-2BD•DC•cos∠BDC,可得:16+AC2-8ACcosA=16+BD2-8BDcos∠BDC,
∴整理可得:AC-BD=8cosA,
∴S△ABC-S△BDC=2sinA(AC-BD)=8sin2A,
∵A∈(0,$\frac{π}{2}$),sin2A∈(0,1],
∴S△ABC-S△BDC=8sin2A≤8,从而可得S△ABC-S△BDC的最大值为8.
点评 本题主要考查了余弦定理,三角形面积公式,正弦函数的图象和性质,二倍角公式在解三角形中的应用,考查了数形结合思想和转化思想的应用,考查了计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| 编号 | 1 | 2 | 3 | 4 | 5 |
| x | 169 | 178 | 166 | 175 | 180 |
| y | 75 | 80 | 77 | 70 | 81 |
查看答案和解析>>
科目:高中数学 来源:2016-2017学年广东清远三中高二上学期第一次月考数学(理)试卷(解析版) 题型:解答题
设有关于
的一元二次方程
.
(Ⅰ)若
是从
四个数中任取的一个数,
是从
三个数中任取的一个数,求上述方程有实根的概率;
(Ⅱ)若
是从区间
任取的一个数,
是从区间
任取的一个数,求上述方程有实根的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [0,4$\sqrt{2}$] | B. | [2,4] | C. | [2$\sqrt{2}$,4$\sqrt{2}$] | D. | [2$\sqrt{2}$,3$\sqrt{2}$] |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com