分析 (1)利用an=Sn-Sn-1化简可知an=2an-1(n≥2),进而可知数列{an}是首项、公比均为2的等比数列,计算即得结论;
(2)通过(1)裂项可知bn=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,进而并项相加即得结论.
解答 解:(1)∵3Sn+4an-1=5an+3Sn-1(n≥2),
∴3an+4an-1=5an,即an=2an-1(n≥2),
又∵a1=2,
∴数列{an}是首项、公比均为2的等比数列,
于是其通项公式an=2n;
(2)由(1)可知bn=$\frac{{a}_{n}}{{(a}_{n}+1){(a}_{n+1}+1)}$=$\frac{{2}^{n}}{({2}^{n}+1)({2}^{n+1}+1)}$=$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$,
则Tn=$\frac{1}{2+1}$-$\frac{1}{{2}^{2}+1}$+$\frac{1}{{2}^{2}+1}$-$\frac{1}{{2}^{3}+1}$+…+$\frac{1}{{2}^{n}+1}$-$\frac{1}{{2}^{n+1}+1}$=$\frac{1}{3}$-$\frac{1}{{2}^{n+1}+1}$.
点评 本题考查数列的通项及前n项和,考查裂项相消法,注意解题方法的积累,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分又不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{{e}^{2}}$<x1x2<$\frac{1}{e}$ | B. | $\frac{1}{{e}^{2}}$<x1x2<1 | C. | $\frac{1}{e}$<x1x2<1 | D. | e<x1x2<e2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{1}{2}$ | D. | -$\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com