分析 由和差角的三角函数公式和同角三角函数基本关系,由左向右证明即可.
解答 证明:左边=$\frac{sin(α+β)sin(α-β)}{s{in}^{2}αco{s}^{2}β}$
=$\frac{(sinαcosβ+cosαsinβ)(sinαcosβ-cosαsinβ)}{si{n}^{2}αco{s}^{2}β}$
=$\frac{si{n}^{2}αco{s}^{2}β-co{s}^{2}αsi{n}^{2}β}{si{n}^{2}αco{s}^{2}β}$
=1-$\frac{co{s}^{2}αsi{n}^{2}β}{si{n}^{2}αco{s}^{2}β}$
=1-$\frac{ta{n}^{2}β}{ta{n}^{2}α}$=右边,
故等式成立.
点评 本题考查三角函数恒等式的证明,涉及和差角的三角函数公式和同角三角函数基本关系,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 最大值为1,图象关于直线x=$\frac{π}{2}$对称 | B. | 在(0,$\frac{π}{4}$)上单调递减,为奇函数 | ||
| C. | 在(-$\frac{3π}{8}$,$\frac{π}{8}$)上单调递增,为偶函数 | D. | 周期为π,图象关于点($\frac{3π}{8}$,0)对称 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{5}}{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com