精英家教网 > 高中数学 > 题目详情
11.$\frac{\overline{z}}{1+i}$=2+i,则z=(  )
A.1-3iB.1+3iC.-1-3iD.-1+3i

分析 把已知等式变形,利用复数代数形式的乘法运算化简,再由共轭复数的概念得答案.

解答 解:∵$\frac{\overline{z}}{1+i}$=2+i,
∴$\overline{z}=(2+i)(1+i)=1+3i$,
则z=1-3i.
故选:A.

点评 本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,其中a>0,当该区域的面积为4时,z=2x-y的最大值是(  )
A.6B.0C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知0<a<b<1,求证:
(Ⅰ)a+b<1+ab;
(Ⅱ)$\sqrt{a}-\sqrt{b}<\sqrt{a+b}-\sqrt{b+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.当0<x<$\frac{1}{2}$时,4x<logax,则a的取值范围是(  )
A.(0,$\frac{\sqrt{2}}{2}$]B.($\frac{\sqrt{2}}{2}$,1)C.[$\frac{\sqrt{2}}{2}$,1)D.(1,$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设α:1≤x<4,β:x≤m,若α是β的充分条件,则实数m的取值范围是[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知二次函y=-x2+x在x=Sn处的切线斜率为an,并且b1=1,b2=$\frac{1}{2}$,$\frac{2}{{b}_{n+1}}$=$\frac{1}{{b}_{n}}$+$\frac{1}{{b}_{n+2}}$.
(1)求an和bn的通项公式;       
 (2)求数列$\{\frac{a_n}{b_n}\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若从区间(0,e)内随机取两个数,则这两个数之积不小于e的概率为1-$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知等差数列{an}满足a2=2,a6+a8=14.
(I)求数列{an}的通项公式;
(II)记bn=$\frac{{a}_{n}}{{2}^{n}}$,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在平面直角坐标系中,点M(-5,-4),N(-1,0),圆C的半径为2,圆心在直线$l:y=-\frac{1}{2}x-1$上
(1)若圆心C也在圆x2+y2-6x+4=0上,过点M作圆C的切线,求切线的方程.
(2)若圆C上存在点R,使$|RM|=\sqrt{2}|RN|$,求圆心C的纵坐标b的取值范围.

查看答案和解析>>

同步练习册答案