精英家教网 > 高中数学 > 题目详情
20.已知数列{an}满足a1=1,且9an+1an-2•an+1-4an+1=0 (n∈N*).
(1)求a2,a3,a4的值;
(2)求{an}的通项公式.

分析 (1)通过9an+1an-2•an+1-4an+1=0可知an+1=$\frac{4{a}_{n}-1}{9{a}_{n}-2}$,进而利用a1=1直接代入计算即得结论;
(2)通过(1)可猜想an=$\frac{2n-1}{6n-5}$,进而利用数学归纳法证明即可.

解答 解:(1)∵9an+1an-2•an+1-4an+1=0,
∴an+1=$\frac{4{a}_{n}-1}{9{a}_{n}-2}$,
又∵a1=1,
∴a2=$\frac{3}{7}$,a3=$\frac{5}{13}$,a4=$\frac{7}{19}$;
(2)由(1)可猜想an=$\frac{2n-1}{6n-5}$.
下面用数学归纳法来证明:
①当n=1时,a1=1结论显然成立;
②假设当n=k时(k∈N+)时,结论成立,即ak=$\frac{2k-1}{6k-5}$,
则当n=k+1时,有ak+1=$\frac{4{a}_{k}-1}{9{a}_{k}-2}$=$\frac{4•\frac{2k-1}{6k-5}-1}{9•\frac{2k-1}{6k-5}-2}$=$\frac{2k+1}{6k+1}$=$\frac{2(k+1)-1}{6(k+1)-5}$,
即当n=k+1时命题也成立;
由①②可知an=$\frac{2n-1}{6n-5}$.

点评 本题考查数列的通项及前n项和,考查数学归纳法,考查运算求解能力,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.已知直线l经过点p(3,4),且它的倾斜角θ=120°.
(1)写出直线l的参数方程;
(2)求直线l与直线x一y+1=0的交点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.如图,是一个算法的程序框图,当输出的y值为2时,若将输入的x的所有可能值按从小到大的顺序排列得到一个数列{an},则该数列的通项公式为an=an=3n-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.(1)画出选修1-2第3章《复数》的知识结构图.
(2)某药厂生产某产品工艺过程:
①备料、前处理、提取、制粒、压片、包衣、颗粒分装、包装.
②取环节经检验,合格,进入下工序,否则返回前处理.
③包衣、颗粒分装两环节检验合格进入下工序,否则为废品.
画出生产该产品的工序流程图.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.若动点M到定点A(0,1)与定直线l:y=3的距离之和为4.
(1)求点M的轨迹方程,并画出方程的曲线草图;
(2)记(1)得到的轨迹为曲线C,问曲线C上关于点B(0,t)(t∈R)对称的不同点有几对?请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.为了了解某火车站候车旅客用手机使用火车站WIFI情况,在某日15:00时,把该候车厅10至50岁年龄段的旅客按年龄分区间[10,20),[20,30),[30,40),[40,50]得到如图所示的人数频率分布直方图,现用分层抽样的方法从中得到一样本.若样本在区间[20,30)上有6人,则该样本在区间[40,50]上有4人.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.某几何体的正视图和侧(左)视图都是边长为2的正方体,俯视图是扇形,体积为2π,该几何体的表面积为(  )
A.8+4πB.4+4πC.8+2πD.4+2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.复数$\frac{2+i}{1-2i}$(  )
A.iB.-iC.4+2iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=$\left\{\begin{array}{l}{|lo{g}_{2}x|,0<x<2}\\{sin(\frac{π}{4}x),2≤x≤10}\end{array}\right.$,若存在实数x1、x2、x3、x4满足,x1<x2<x3<x4,且f(x1)=f(x2)=f(x3)=f(x4),则x1•x2•(x3-2)•(x4-2)的取值范围是(  )
A.(4,16)B.(0,12)C.(9,21)D.(15,25)

查看答案和解析>>

同步练习册答案