精英家教网 > 高中数学 > 题目详情
14.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{{x}^{2}-2x+1(x>0)}\end{array}\right.$在[-1,a](a>2)上最大值与最小值之差为4,则a=3.

分析 根据函数的解析式求出f(x)的最大值和最小值,各个关于a的方程,解出即可.

解答 解:-1≤x≤0时,f(x)∈[$\frac{1}{2}$,1],
0<x≤a时,f(x)∈[0,a2-2a+1],
故最大值是a2-2a+1,最小值是0,
故a2-2a+1-0=4,解得:a=3或a=-1(舍)
故答案为:3.

点评 本题考查了指数函数以及二次函数的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.函数f(x)=$\frac{\sqrt{9-{x}^{2}}}{3-x}$的定义域为(  )
A.{x|≠3}B.{x|≤-3或x>3}C.{x|-3<x≤3}D.{x|-3≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列三个命题中正确命题的个数为(  )
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个底面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
A.O个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.实数a,b,“$\frac{1}{a}$<$\frac{1}{b}$<0“是“a>b“的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若l1:x+(1+m)y+m-1=0,l2:mx+2y+6=0是两条平行直线,则m的值是(  )
A.m=1或m=-2B.m=1C.m=-2D.m的值不存在

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,点O是△ABC的外心,以OA、OB为邻边作平行四边形OADB,再以OC、OD为邻边作平行四边形OCHD,设$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$;
(1)用$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$表示向量$\overrightarrow{OH}$;
(2)证明:$\overrightarrow{AH}$⊥$\overrightarrow{BC}$;
(3)若在△ABC中,∠BAC=60°,∠ABC=45°,外接圆半径为2;求|$\overrightarrow{OH}$|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.解下列方程:
(1)$(\frac{2}{3})^{x}(\frac{9}{8})^{x}=\frac{27}{64}$
(2)2logx25-3log25x=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的两个焦点分别为F1,F2,离心率为$\frac{1}{2}$.设过点F2的直线l与椭圆C相交于不同两点A,B,$△ABF_1^{\;}$周长为8.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知点T(4,0),证明:当直线l变化时,总有TA与TB的斜率之和为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.某大学中文系有学生5200人,其中一年级学生2000人、二年级学生1600人、三年级学生1200人、四年级学生400人,要用分层抽样的方法从该系中抽取一个容量为260的样本,则应抽三年级的学生(  )
A.100人B.60人C.80人D.20人

查看答案和解析>>

同步练习册答案