精英家教网 > 高中数学 > 题目详情
14.设集合A={x|x2-2x-3<0},B={y|y=ex,x∈R},则A∩B=(  )
A.(0,3)B.(0,2)C.(0,1)D.(1,2)

分析 求出A中不等式的解集确定出A,求出B中y的范围确定出B,找出两集合的交集即可.

解答 解:由A中不等式变形得:(x-3)(x+1)<0,
解得:-1<x<3,即A=(-1,3),
由B中y=ex>0,得到B=(0,+∞),
则A∩B=(0,3),
故选:A.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.若函数f(x)=loga(ax2-x)在$[\frac{1}{2}{,_{\;}}3]$上单调递增,则实数a的取值范围是(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若函数f(x)=sin$\frac{ωx}{2}sin\frac{π+ωx}{2}({ω>0})$的最小正周期为π,则ω=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在空间,下列命题中不正确的是(  )
A.如果两个平面有一个公共点,那么它们还有其他公共点
B.若已知四个点不共面,则其中任意三个点也不共面
C.若点A既在平面α内又在平面β内,则点A在平面α与平面β的交线上
D.若两点A、B既在直线l上又在平面α内,则l在平面α内

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.在△ABC中,O为中线BD上的一个动点,若BD=6,则$\overrightarrow{OB}•({\overrightarrow{OA}+\overrightarrow{OC}})$的最小值是(  )
A.0B.-9C.-18D.-24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设x,y满足约束条件$\left\{\begin{array}{l}3x-y-2≤0\\ x-y≥0\\ x≥0,y≥0\end{array}\right.$,若目标函数 $z=x+\frac{m}{2}y(m>0)$的最大值为2,则$y=sin(mx+\frac{π}{3})$的图象向右平移$\frac{π}{6}$后的表达式为(  )
A.$y=sin(2x+\frac{π}{6})$B.$y=sin(x+\frac{π}{6})$C.y=sin2xD.$y=sin(2x+\frac{2π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.命题P:“?x∈R,x2+1<2x”的否定¬P为(  )
A.?x∈R,x2+1>2xB.?x∈R,x2+1≥2xC.?x∈R,x2+1≥2xD.?x∈R,x2+1<2x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.定义集合A={x|x=$\frac{m}{3}+\frac{n}{2}$,m,n∈Z},B={y|y=6x,x∈A},则下列说法判断正确的是(  )
A.若x∈A且x∈(0,1),则x的最大值为$\frac{2}{3}$B.若集合C为偶数集,则B∪C=C
C.若x∈A,则x∈BD.若x∈B,则x∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,已知sin($\frac{π}{2}$+A)=$\frac{11}{14}$,cos(π-B)=-$\frac{1}{2}$.
(1)求sinA与B的值;
(2)若角A,B,C的对边分别为a,b,c,且a=5,求b,c的值.

查看答案和解析>>

同步练习册答案