分析 (1)利用诱导公式与同角三角函数基本关系式即可得出;
(2)利用正弦定理与余弦定理即可得出.
解答 解:(1)∵$sin(\frac{π}{2}+A)=cosA$,
∴$cosA=\frac{11}{14}$,
又∵0<A<π,
∴$sinA=\frac{{5\sqrt{3}}}{14}$.
∵$cos(π-B)=-cosB=-\frac{1}{2}$,且0<B<π,
∴$B=\frac{π}{3}$.
(2)由正弦定理得$\frac{a}{sinA}=\frac{b}{sinB}$,
∴$b=\frac{a•sinB}{sinA}=7$,
另由b2=a2+c2-2accosB得49=25+c2-5c,
解得c=8或c=-3(舍去),
∴b=7,c=8.
点评 本题主要考查解三角形的基础知识,正、余弦定理,诱导公式,同角三角函数的基本关系,两角和与差的余弦公式等知识,考查了考生运算求解的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | (0,3) | B. | (0,2) | C. | (0,1) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 指数API | [0,50] | (50,100] | (100,150] | (150,200] | (200,250] | (250,300] | >300 |
| 空气质量 | 优 | 良 | 轻微污染 | 轻度污染 | 中度污染 | 中重度污染 | 重度污染 |
| 天数 | 4 | 13 | 18 | 30 | 9 | 11 | 15 |
| 非重度污染 | 重度污染 | 合计 | |
| 供暖季 | 22 | 8 | 30 |
| 非供暖季 | 63 | 7 | 70 |
| 合计 | 85 | 15 | 100 |
| P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com