14£®ÒÑÖªÍÖÔ²C1£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬ËüµÄ½¹µãÓëÅ×ÎïÏßC2£ºx2=4yµÄ½¹µã¼äµÄ¾àÀëΪ2£®
£¨1£©ÇóÍÖÔ²C1µÄ·½³Ì£»
£¨2£©ÉèC1ÓëC2ÔÚµÚÒ»ÏóÏ޵Ľ»µãΪA£¬¹ýAбÂÊΪk£¨k£¾0£©µÄÖ±Ïßl1ÓëC1µÄÁíÒ»¸ö½»µãΪB£¬¹ýµãAÓël1´¹Ö±µÄÖ±Ïßl2ÓëC2µÄÁíÒ»¸ö½»µãΪC£¬Éèm=$\frac{|\overrightarrow{AB}|}{|\overrightarrow{AC}|}$£¬ÊÔÇómµÄȡֵ·¶Î§£®

·ÖÎö £¨1£©ÓÉÀëÐÄÂʹ«Ê½ºÍ½¹µã×ø±ê¿ÉµÃc£¬a£¬ÔÙÓÉÍÖÔ²µÄa£¬b£¬cµÄ¹ØÏµ£¬¿ÉµÃb£¬½ø¶øµÃµ½ÍÖÔ²·½³Ì£»
£¨2£©Éè³öÖ±ÏßABµÄ·½³Ì£¬ÁªÁ¢ÍÖÔ²·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬ÇóµÃ|AB|£¬ÔÙÉèÖ±ÏßACµÄ·½³Ì£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÔËÓÃΤ´ï¶¨ÀíºÍÏÒ³¤¹«Ê½£¬¿ÉµÃ|AC|£¬ÔÙÇómµÄ·¶Î§£¬¼´¿ÉµÃµ½£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬
Å×ÎïÏßC2£ºx2=4yµÄ½¹µãΪ£¨0£¬1£©£¬
ÍÖÔ²µÄ½¹µãΪ£¨¡Àc£¬0£©£¬
¼´ÓÐ$\sqrt{1+{c}^{2}}$=2£¬½âµÃc=$\sqrt{3}$£¬a=$\sqrt{6}$£¬
b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$£¬
¼´ÓÐÍÖÔ²C1µÄ·½³ÌΪ$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1£»
£¨2£©ÁªÁ¢ÍÖÔ²·½³ÌºÍÅ×ÎïÏß·½³Ì£¬½âµÃA£¨2£¬1£©£¬
ÓÉÌâÒâµÃÖ±ÏßABµÄ·½³ÌΪy-1=k£¨x-2£©£¬ÁªÁ¢ÍÖÔ²·½³ÌÏûÈ¥y£¬
µÃ£¨2k2+1£©x2+4k£¨1-2k£©x+2£¨1-2k£©2-6=0£¬
ÔòxAxB=$\frac{2£¨1-2k£©^{2}-6}{1+2{k}^{2}}$£¬xA+xB=-$\frac{4k£¨1-2k£©}{1+2{k}^{2}}$£¬
¡ßxA=2£¬¡àxB=$\frac{2£¨2{k}^{2}-2k-1£©}{1+2{k}^{2}}$£¬
¼´ÓÐ|AB|2=£¨1+k2£©|xA-xB|=£¨1+k2£©•$\frac{4k+4}{1+2{k}^{2}}$£¬
Ö±ÏßACµÄ·½³ÌΪy-1=-$\frac{1}{k}$£¨x-2£©£¬ÁªÁ¢Å×ÎïÏß·½³Ì£¬ÏûÈ¥y£¬µÃx2+$\frac{4}{k}$x-4-$\frac{8}{k}$=0£¬
¡àxAxC=-4-$\frac{8}{k}$£¬xA+xC=-$\frac{4}{k}$£¬
¡ßxA=2£¬¡àxC=-$\frac{2£¨k+2£©}{k}$£¬
¼´ÓÐ|AC|2=£¨1+$\frac{1}{{k}^{2}}$£©|xA-xC|=£¨1+$\frac{1}{{k}^{2}}$£©•$\frac{4k+4}{k}$£¬
ÔòÓÐm2=$\frac{|AB{|}^{2}}{|AC{|}^{2}}$=$\frac{4{k}^{2}}{1+2{k}^{2}}$=$\frac{4}{2+\frac{1}{{k}^{2}}}$£¼2£¬
¼´ÓÐ0£¼m£¼$\sqrt{2}$£®
ÔòmµÄȡֵ·¶Î§ÊÇ£¨0£¬$\sqrt{2}$£©£®

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ·½³ÌºÍÐÔÖÊ£¬Ö÷Òª¿¼²éÍÖÔ²µÄÀëÐÄÂʹ«Ê½ºÍ½¹µã×ø±ê£¬Í¬Ê±¿¼²éÖ±Ïß·½³ÌºÍÍÖÔ²·½³Ì£¬Å×ÎïÏß·½³ÌÁªÁ¢£¬ÔËÓÃΤ´ï¶¨Àí£¬ÒÔ¼°ÏÒ³¤¹«Ê½£¬×¢Ò⻯¼òÕûÀí£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èôº¯Êýf£¨x£©=sin$\frac{¦Øx}{2}sin\frac{¦Ð+¦Øx}{2}£¨{¦Ø£¾0}£©$µÄ×îСÕýÖÜÆÚΪ¦Ð£¬Ôò¦Ø=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÃüÌâP£º¡°?x¡ÊR£¬x2+1£¼2x¡±µÄ·ñ¶¨©VPΪ£¨¡¡¡¡£©
A£®?x¡ÊR£¬x2+1£¾2xB£®?x¡ÊR£¬x2+1¡Ý2xC£®?x¡ÊR£¬x2+1¡Ý2xD£®?x¡ÊR£¬x2+1£¼2x

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®¶¨Ò弯ºÏA={x|x=$\frac{m}{3}+\frac{n}{2}$£¬m£¬n¡ÊZ}£¬B={y|y=6x£¬x¡ÊA}£¬ÔòÏÂÁÐ˵·¨ÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Èôx¡ÊAÇÒx¡Ê£¨0£¬1£©£¬ÔòxµÄ×î´óֵΪ$\frac{2}{3}$B£®Èô¼¯ºÏCΪżÊý¼¯£¬ÔòB¡ÈC=C
C£®Èôx¡ÊA£¬Ôòx¡ÊBD£®Èôx¡ÊB£¬Ôòx¡ÊA

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ò»Ë«ÇúÏßÒÔÍÖÔ²$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{16}$=1µÄ³¤Öá¶¥µãΪ½¹µã£¬½¥½üÏßÓëÍÖÔ²½¹µãÓë¶ÌÖá¶¥µãµÄÁ¬Ï߯½ÐУ®
£¨1£©ÇóË«ÇúÏߵıê×¼·½³Ì£»
£¨2£©PµãÔÚË«ÇúÏßÉÏ£¬ÇÒPF1¡ÍPF2£¬ÇóµãPµ½xÖáµÄ¾àÀ룮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔÚËÄÀâ×¶P-ABCDÖУ¬AD¡ÍÆ½ÃæPDC£¬PD¡ÍDC£¬µ×ÃæABCDÊÇÌÝÐΣ¬AB¡ÎDC£¬AB=AD=PD=1£¬CD=2
£¨1£©ÇóÖ¤£ºÆ½ÃæPBC¡ÍÆ½ÃæPBD£»
£¨2£©ÉèQΪÀâPCÉÏÒ»µã£¬$\overrightarrow{PQ}$=¦Ë$\overrightarrow{PC}$£¬ÊÔÈ·¶¨ ¦ËµÄֵʹµÃ¶þÃæ½ÇQ-BD-PΪ60¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÏÂÁк¯ÊýÖУ¬¼ÈÊÇżº¯ÊýÓÖÔÚÇø¼ä£¨0£¬+¡Þ£©Éϵ¥µ÷µÝ¼õµÄÊÇ£¨¡¡¡¡£©
A£®y=ln|x|B£®y=cosxC£®$y=\frac{1}{x}$D£®y=-x2+1

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚ¡÷ABCÖУ¬ÒÑÖªsin£¨$\frac{¦Ð}{2}$+A£©=$\frac{11}{14}$£¬cos£¨¦Ð-B£©=-$\frac{1}{2}$£®
£¨1£©ÇósinAÓëBµÄÖµ£»
£¨2£©Èô½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£¬ÇÒa=5£¬Çób£¬cµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®¼¯ºÏA={x¡ÊN|0£¼x£¼4}µÄ×Ó¼¯¸öÊýΪ£¨¡¡¡¡£©
A£®3B£®4C£®7D£®8

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸