精英家教网 > 高中数学 > 题目详情
9.若$\{(x,y)|\left\{{\begin{array}{l}{x+y-2=0}\\{x-2y+4=0}\end{array}}\right.\}⊆\{(x,y)|y=3x+c\}$,则c=2.

分析 由题意,方程组的解为(0,2),代入y=3x+c,可得c的值.

解答 解:由题意,方程组的解为(0,2),
代入y=3x+c,可得c=2.
故答案为2.

点评 本题考查集合的运算,考查方程组的解法,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.运行如图所示的程序框图,若输出的k的值为13,则判断框中可以填(  )
A.m>7?B.m≥7?C.m>8?D.m>9?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$经过点$(1,\frac{{2\sqrt{3}}}{3})$,左右焦点分别为F1、F2,圆x2+y2=2与直线x+y+b=0相交所得弦长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设Q是椭圆C上不在x轴上的一个动点,Q为坐标原点,过点F2作OQ的平行线交椭圆C于M、N两个不同的点
(1)试探究$\frac{|MN|}{{|OQ{|^2}}}$的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
(2)记△QF2M的面积为S1,△OF2N的面积为S2,令S=S1+S2,求S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在等差数列{an}中,a2+a7=-23,a3+a8=-29
(1)求数列{an}的通项公式;
(2)设数列{an+bn}是首项为1,公比为2的等比数列,求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若4<x<7,则式子$\root{4}{{{{(x-4)}^4}}}+\root{4}{{{{(x-7)}^4}}}$=3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列推导不正确的是(  )
A.a>b⇒c-a<c-bB.$\frac{c}{a}>\frac{c}{b},c>0⇒a<b$C.$a>b>0,c>d⇒\sqrt{\frac{a}{d}}>\sqrt{\frac{b}{c}}$D.$\root{n}{a}<\root{n}{b}(n∈{N^*})⇒a<b$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,圆台的高为4,上、下底面半径分别为3、5,M、N分别在上、下底面圆周上,且<$\overrightarrow{{O}_{2}M}$,$\overrightarrow{{O}_{1}N}$>=120°,则|$\overrightarrow{MN}$|等于(  )
A.$\sqrt{65}$B.5$\sqrt{2}$C.$\sqrt{35}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知不等式|x|+|x-3|<x+6的解集为(m,n).
(1)求m,n的值;
(2)若x>0,y>0,nx+y+m=0,求证:x+y≥16xy.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知点A(0,-2),椭圆$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$\frac{{\sqrt{2}}}{2},F$,是椭圆E的右焦点,直线AF的斜率为2,O为坐标原点.
(1)求E的方程;
(2)设过点A动直线l与E相交于P,Q两点,当OP⊥OQ时,求l的方程.

查看答案和解析>>

同步练习册答案