精英家教网 > 高中数学 > 题目详情
12.如图,在四棱锥P-ABCD中,底面是边长为2的正方形,PA⊥底面ABCD,E为BC的中点,PC与平面PAD所成的角为arctan$\frac{\sqrt{2}}{2}$.
(1)求证:CD⊥PD;
(2)求异面直线AE与PD所成的角的大小(结果用反三角函数表示);
(3)若直线PE、PB与平面PCD所成角分别为α、β,求$\frac{sinα}{sinβ}$的值.

分析 (1)由PA⊥平面ABCD得出PA⊥CD,又CD⊥AD得出CD⊥平面PAD,故而CD⊥PD;
(2)以A为坐标原点激励空间直角坐标系,求出$\overrightarrow{AE}$,$\overrightarrow{PD}$的坐标,计算$\overrightarrow{AE}$,$\overrightarrow{PD}$的夹角即可得出答案;
(3)求出平面PCD的法向量$\overrightarrow{n}$,则sinα=|cos<$\overrightarrow{n}$,$\overrightarrow{EP}$>|,sinβ=|cos<$\overrightarrow{n}$,$\overrightarrow{BP}$>|.

解答 证明:(1)∵PA⊥平面ABCD,CD?平面ABCD,
∴PA⊥CD.
∵四边形ABCD是正方形,∴CD⊥AD.
又PA?平面PAD,AD?平面PAD,PA∩AD=A,
∴CD⊥平面PAD,∵PD?平面PAD,
∴CD⊥PD.
(2)由(1)可知CD⊥平面PAD,∴∠CPD为PC与平面PAD所成的角.
∴tan∠CPD=$\frac{CD}{PD}=\frac{\sqrt{2}}{2}$,∴PD=2$\sqrt{2}$.∴PA=$\sqrt{P{D}^{2}-A{D}^{2}}$=2.
以A为原点,以AB,AD,AP为坐标轴建立如图所示的空间直角坐标系,
则A(0,0,0),E(2,1,0),P(0,0,2),D(0,2,0).
∴$\overrightarrow{AE}$=(2,1,0),$\overrightarrow{PD}$=(0,2,-2).
∴$\overrightarrow{AE}•\overrightarrow{PD}$=2,|$\overrightarrow{AE}$|=$\sqrt{5}$,|$\overrightarrow{PD}$|=2$\sqrt{2}$,
∴cos<$\overrightarrow{AE},\overrightarrow{PD}$>=$\frac{\overrightarrow{AE}•\overrightarrow{PD}}{|\overrightarrow{AE}||\overrightarrow{PD}|}$=$\frac{\sqrt{10}}{10}$.
∴异面直线AE与PD所成的角为arccos$\frac{\sqrt{10}}{10}$.
(3)∵C(2,2,0),B(2,0,0),∴$\overrightarrow{BP}$=(-2,0,2),$\overrightarrow{EP}$=(-2,-1,2),$\overrightarrow{CD}$=(-2,0,0).
设平面PCD的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{CD}=0}\\{\overrightarrow{n}•\overrightarrow{PD}=0}\end{array}\right.$,
∴$\left\{\begin{array}{l}{-2x=0}\\{2y-2z=0}\end{array}\right.$,令z=1得$\overrightarrow{n}$=(0,1,1).
∴$\overrightarrow{n}•\overrightarrow{EP}$=1,$\overrightarrow{n}•\overrightarrow{BP}$=2.
∴cos<$\overrightarrow{n},\overrightarrow{EP}$>=$\frac{\overrightarrow{n}•\overrightarrow{EP}}{|\overrightarrow{n}||\overrightarrow{EP}|}$=$\frac{\sqrt{2}}{6}$,cos<$\overrightarrow{n},\overrightarrow{BP}$>=$\frac{\overrightarrow{n}•\overrightarrow{BP}}{|\overrightarrow{n}||\overrightarrow{BP}|}$=$\frac{1}{2}$.
∴sinα=$\frac{\sqrt{2}}{6}$,sinβ=$\frac{1}{2}$.
∴$\frac{sinα}{sinβ}$=$\frac{\sqrt{2}}{3}$.

点评 本题考查了线面垂直的性质与判定,空间向量与空间角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.已知{bn}为等差数列,b5=2,则b1+b2+b3+…+b9=2×9,若{an}为等比数列,a5=2,则{an}的类似结论为${a_1}{a_2}{a_3}…{a_9}={2^9}$:.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知tanα=$\frac{1}{7}$,tan(α+β)=$\frac{1}{3}$,则tanβ的值为$\frac{2}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若经过圆柱的轴的截面面积为2,则圆柱的侧面积为2π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.曲线Γ:2x2-3xy+2y2=1(  )
A.关于x轴对称
B.关于原点对称,但不关于直线y=x对称
C.关于y轴对称
D.关于直线y=x对称,也关于直线y=-x对称

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.用反证法证明命题“三角形的内角中至少有一个角不大于60度”时,应假设“三角形的三角形的三个内角都大于60°”(用文字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=alnx+x,(a为常数).
(1)当a=-2时,求函数f(x)的单调区间;
(2)若对任意的x∈[$\frac{1}{e}$,e]时,f(x)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,其左焦点F1到点P(2,1)的距离是$\sqrt{10}$.
(1)求椭圆E的方程;
(2)若直线l:y=kx+m被圆O:x2+y2=3截得的弦长为3,且l与椭圆E交于A,B两点,△AOB面积S的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=x-2sinx(x$∈[0,\frac{π}{2}]$),求函数f(x)的最大值和最小值.

查看答案和解析>>

同步练习册答案