精英家教网 > 高中数学 > 题目详情
17.用反证法证明命题“三角形的内角中至少有一个角不大于60度”时,应假设“三角形的三角形的三个内角都大于60°”(用文字作答).

分析 根据命题“三角形的内角中至少有一个内角不大于60°”的否定是:三角形的三个内角都大于60°,由此得到答案.

解答 证明:用反证法证明命题:“三角形的内角中至少有一个内角不大于60°”时,
应假设命题的否定成立,而命题“三角形的内角中至少有一个内角不大于60°”的否定是:
三角形的三个内角都大于60°,
故答案为:三角形的三个内角都大于60°

点评 本题主要考查求一个命题的否定,用反证法证明数学命题,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.设集合U={1,2,3,4,5,6,7,8},A={1,2,3},B={3,5},则(∁UA)∩B=(  )
A.{1,2,3,4}B.{3,5}C.{5}D.{1,2,3,4,5}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设集合A={x|x-1>1},B={x|x<3},则A∩B={x|2<x<3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知曲线C的方程为F(x,y)=0,集合T={(x,y)|F(x,y)=0},若对于任意的(x1,y1)∈T,都存在(x2,y2)∈T,使得x1x2+y1y2=0成立,则称曲线C为$\sum_{\;}^{\;}$曲线,下列方程所表示的曲线中,是$\sum_{\;}^{\;}$曲线的有①③⑤(写出所有$\sum_{\;}^{\;}$曲线的序号)
①2x2+y2=1;②x2-y2=1;③y2=2x;④|x|-|y|=1;⑤(2x-y+1)(|x-1|+|y-2|)=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面是边长为2的正方形,PA⊥底面ABCD,E为BC的中点,PC与平面PAD所成的角为arctan$\frac{\sqrt{2}}{2}$.
(1)求证:CD⊥PD;
(2)求异面直线AE与PD所成的角的大小(结果用反三角函数表示);
(3)若直线PE、PB与平面PCD所成角分别为α、β,求$\frac{sinα}{sinβ}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.对于复数z1=m+i,z2=m+(m-2)i(i为虚数单位,m为实数).
(1)若z2在复平面内对应的点位于第四象限,求m的取值范围;
(2)若z1,z2满足z2=z1•ni,求实数m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知函数f(x)=sin(2x-$\frac{π}{6}$)的图象C1向左平移$\frac{π}{4}$个单位得图象C2,则C2对应的函数g(x)的解析式为y=sin(2x+$\frac{π}{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知△ABC的重心为O,且AB=5,BC=2$\sqrt{3}$,AC=3,则$\overrightarrow{AO}$•$\overrightarrow{BC}$=-$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=xlnx-3x+8.
(1)求函数y=f(x)在[e,e3](e是自然对数的底数)的值域;
(2)设0<a<b,求证:$0<2f(a)+f(b)-3f({\frac{2a+b}{3}})<({b-a})ln3$.

查看答案和解析>>

同步练习册答案