精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3+ax2+2,x=2是f(x)的一个极值点,求:
(1)实数a的值;
(2)f(x)在区间[-1,3]上的最大值和最小值.
考点:利用导数求闭区间上函数的最值
专题:计算题,导数的概念及应用
分析:(1)由x=-2是f(x)的一个极值点,得f′(2)=0,解出可得;
(2)由(1)可求f(x),f'(x),令f′(x)=0,得x1=0,x2=2.当x变化时f′(x),f(x)的变化情况列成表格,由极值、端点处函数值可得函数的最值;
解答: 解:(1)∵f(x)在x=2处有极值,∴f′(2)=0.
∵f′(x)=3x2+2ax,∴3×4+4a=0,∴a=-3.
经检验a=-3时x=2是f(x)的一个极值点,
故a=-3;
(2)由(1)知a=-3,∴f(x)=x3-3x2+2,f′(x)=3x2-6x.
令f′(x)=0,得x1=0,x2=2.当x变化时f′(x),f(x)的变化情况如下表:
x -1 (-1,0) 0 (0,2) 2 (2,3) 3
f'(x) + 0 - 0 +
f(x) -2 ?↑ 2 ?↓ -2 ↑? 2
从上表可知f(x)在区间[-1,3]上的最大值是2,最小值是-2.
点评:本题考查利用导数研究函数的极值、最值,属中档题,正确理解导数与函数的关系是解题关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(2,3),
b
=(1,4),
c
=(k,3),(
a
+
b
)⊥
c
,则实数k=(  )
A、-7B、-2C、2D、7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2ax
(1)若f(x)在(-∞,+∞)上为减函数,求实数a的取值范围;
(2)若f(x)在[1,2]上的最大值与最小值的和为6,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

若x=
5
2
,则
x+1
-
x-1
x+1
+
x-1
+
x+1
+
x-1
x+1
-
x-1

查看答案和解析>>

科目:高中数学 来源: 题型:

在同一坐标系中,画出函数y=sinx和函数y=tanx在x∈[0,2π]的图象,并根据图象回答下列问题:
(1)写出这两个函数图象的交点坐标;
(2)写出使tanx>sinx成立的x的取值范围;
(3)写出使tanx=sinx成立的x的取值范围;
(4)写出使tanx<sinx成立的x的取值范围;
(5)写出使这两个函数具有相同的单调性的区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2-4x-1.
(1)当a=2时,求函数f(x)的零点;
(2)当a=2且x∈(0,1)时,f(1-m)-f(2m-1)<0恒成立,求m的取值范围;
(3)若a=0,设g(x)=
b
x
(b≠0)
,且函数h(x)=g(x)-f(x)是区间(1,3)上的单调函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

解关于x的不等式  
x-1
x-2
1
a

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)在定义域(-1,1)内单调递减,且 f(1-a)<f(a2-1),则实数a的取值范围为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前3项分别为4、6、8,则数列{an}的第4项为(  )
A、7B、8C、10D、12

查看答案和解析>>

同步练习册答案