16£®ÒÑÖª¼×ÏäÖÐ×°ÓÐ3¸öºìÇò¡¢3¸öºÚÇò£¬ÒÒÏäÖÐ×°ÓÐ2¸öºìÇò¡¢2¸öºÚÇò£¬ÕâЩÇò³ýÑÕÉ«ÍâÍêÈ«Ïàͬ£®Ä³É̳¡¾ÙÐÐÓн±´ÙÏú»î¶¯£¬Éè½±¹æÔòÈçÏ£ºÃ¿´Î·Ö±ð´ÓÒÔÉÏÁ½¸öÏäÖи÷Ëæ»úÃþ³ö2¸öÇò£¬¹²4¸öÇò£®ÈôÃþ³ö4¸öÇò¶¼ÊǺìÇò£¬Ôò»ñµÃÒ»µÈ½±£»Ãþ³öµÄÇòÖÐÓÐ3¸öºìÇò£¬Ôò»ñµÃ¶þµÈ½±£»Ãþ³öµÄÇòÖÐÓÐ2¸öºìÇò£¬Ôò»ñµÃÈýµÈ½±£»ÆäËûÇé¿ö²»»ñ½±£®Ã¿´ÎÃþÇò½áÊøºó½«Çò·Å»ØÔ­ÏäÖУ®
£¨1£©ÇóÔÚ1´ÎÃþ½±ÖУ¬»ñµÃ¶þµÈ½±µÄ¸ÅÂÊ£»
£¨2£©ÈôÁ¬ÐøÃþ½±2´Î£¬Çó»ñ½±´ÎÊýXµÄ·Ö²¼Áм°ÊýѧÆÚÍûE£¨X£©£®

·ÖÎö £¨1£©Éè¡°ÔÚ1´ÎÃþ½±ÖУ¬»ñµÃ¶þµÈ½±¡±ÎªÊ¼þA£¬ÀûÓû¥³âʼþ¸ÅÂʼÆË㹫ʽÄÜÇó³öÔÚ1´ÎÃþ½±ÖУ¬»ñµÃ¶þµÈ½±µÄ¸ÅÂÊ£®
£¨2£©Éè¡°ÔÚ1´ÎÃþ½±ÖУ¬»ñ½±¡±ÎªÊ¼þB£¬ÏÈÇó³öP£¨B£©£¬ÓÉÌâÒâ¿ÉÖªXµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£®·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³öXµÄ·Ö²¼ÁкÍE£¨X£©£®

½â´ð ½â£º£¨1£©Éè¡°ÔÚ1´ÎÃþ½±ÖУ¬»ñµÃ¶þµÈ½±¡±ÎªÊ¼þA£¬
ÔòP£¨A£©=$\frac{{C}_{3}^{2}{C}_{2}^{1}{C}_{2}^{1}+{C}_{3}^{1}{C}_{3}^{1}{C}_{2}^{2}}{{C}_{6}^{2}{C}_{4}^{2}}$=$\frac{7}{30}$£®¡­£¨4·Ö£©
£¨2£©Éè¡°ÔÚ1´ÎÃþ½±ÖУ¬»ñ½±¡±ÎªÊ¼þB£¬
Ôò»ñµÃÒ»µÈ½±µÄ¸ÅÂÊΪ${P}_{1}=\frac{{C}_{3}^{2}{C}_{2}^{2}}{{C}_{6}^{2}{C}_{4}^{2}}$=$\frac{1}{30}$£¬
»ñµÃÈýµÈ½±µÄ¸ÅÂÊΪP3=$\frac{2{C}_{3}^{2}{C}_{2}^{2}+{C}_{3}^{1}{C}_{3}^{1}{C}_{2}^{1}{C}_{2}^{1}}{{C}_{6}^{2}{C}_{4}^{2}}$=$\frac{7}{15}$£¬
ËùÒÔP£¨B£©=$\frac{1}{30}+\frac{7}{30}+\frac{7}{15}$=$\frac{11}{15}$£®¡­£¨8·Ö£©
ÓÉÌâÒâ¿ÉÖªXµÄËùÓпÉÄÜȡֵΪ0£¬1£¬2£®
P£¨X=0£©=£¨1-$\frac{11}{15}$£©2=$\frac{16}{225}$£¬
P£¨X=1£©=${C}_{2}^{1}¡Á\frac{11}{15}¡Á£¨1-\frac{11}{15}£©$=$\frac{88}{225}$£¬
P£¨X=2£©=£¨$\frac{11}{15}$£©2=$\frac{121}{225}$£®
ËùÒÔXµÄ·Ö²¼ÁÐÊÇ

X012
P$\frac{16}{225}$$\frac{88}{225}$$\frac{121}{225}$
ËùÒÔE£¨X£©=0¡Á$\frac{16}{225}+1¡Á\frac{88}{225}$+2¡Á$\frac{121}{225}$=$\frac{22}{15}$£®¡­£¨10·Ö£©

µãÆÀ ±¾Ì⿼²é¸ÅÂʵÄÇ󷨣¬¿¼²éÀëÉ¢ÐÍËæ»ú±äÁ¿µÄ·Ö²¼ÁеÄÇ󷨣¬ÊÇÖеµÌ⣬½âÌâʱҪÈÏÕæÉóÌ⣬עÒ⻥³âʼþ¸ÅÂʼÆË㹫ʽµÄºÏÀíÔËÓã®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®É躯Êýf£¨x£©=|ex-a|+|$\frac{1}{e^x}$-1|£¬ÆäÖÐa£¬x¡ÊR£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£¬e=2.71828¡­
£¨¢ñ£©µ±a=0ʱ£¬½â²»µÈʽf£¨x£©£¼2£»
£¨¢ò£©Çóº¯Êýf£¨x£©µÄµ¥µ÷ÔöÇø¼ä£»
£¨¢ó£©Éèa¡Ý$\frac{4}{3}$£¬ÌÖÂÛ¹ØÓÚxµÄ·½³Ìf£¨f£¨x£©£©=$\frac{1}{4}$µÄ½âµÄ¸öÊý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ôڱ߳¤Îª2µÄµÈ±ßÈý½ÇÐΡ÷ABCÖУ¬µãMÔÚ±ßABÉÏ£¬ÇÒÂú×ã$\overrightarrow{AM}$=$\overrightarrow{MB}$£¬Ôò$\overrightarrow{CM}$•$\overrightarrow{CB}$=£¨¡¡¡¡£©
A£®3B£®$\sqrt{3}$C£®0D£®-$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªa=$\frac{1}{\sqrt{2}+1}$£¬b=$\frac{1}{\sqrt{2}-1}$£¬Ôòa£¬bµÄµÈ²îÖÐÏîΪ$\sqrt{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®Éèp£ºÊµÊýxÂú×㣨x-a£©2£¼4£¬q£ºÊµÊýxÂú×ã$\left\{\begin{array}{l}{{x}^{2}-x-6¡Ü0}\\{{x}^{2}+2x-8£¾0}\\{\;}\end{array}\right.$£¬ÈôpÊÇqµÄ±ØÒª²»³ä·ÖÌõ¼þ£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨1£¬4]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔڵȲîÊýÁÐ{an}ÖУ¬Èôa1+a4+a7=12£¬ÇÒa2+a5+a8=15£¬Ôòa3+a6+a9=18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªº¯Êýf£¨x£©Âú×ã2f£¨x£©+f£¨$\frac{1}{x}$£©=3x£¬Çóf£¨x£©µÄ½âÎöʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖª{an}ÊÇÊ×ÏîΪ6£¬¹«±ÈΪ-$\frac{1}{2}$µÄµÈ±ÈÊýÁУ¬Ç°nÏîºÍΪSn£¬ÔòÂú×ã|Sn-4|£¼10-2µÄnµÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®8B£®9C£®10D£®11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÒÑÖª0£¼a£¼b£¼1£¬x=ab£¬y=logba£¬z=log${\;}_{\frac{1}{a}}$b£¬Ôòx£¬y£¬zµÄ´óС¹ØÏµÎªy£¾x£¾z£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸