| A. | e-${\;}^{\frac{1}{2}}$ | B. | 2e-${\;}^{\frac{1}{2}}$ | C. | e${\;}^{\frac{1}{2}}$ | D. | 2e${\;}^{\frac{1}{2}}$ |
分析 设出切点坐标,求出函数的导数,利用导数的几何意义求出切线方程,进行比较建立方程关系进行求解即可.
解答 解:函数的定义域为(0,+∞),设切点为(m,2lnm+1),
则函数的导数f′(x)=$\frac{2}{x}$,则切线斜率k=$\frac{2}{m}$,
则对应的切线方程为y-(1+2lnm)=$\frac{2}{m}$(x-m)=$\frac{2}{m}$x-2,
即y=$\frac{2}{m}$x+2lnm-1,
∵y=ax,
∴$\frac{2}{m}$=a且2lnm-1=0,
即lnm=$\frac{1}{2}$,则m=e${\;}^{\frac{1}{2}}$,
则a=$\frac{2}{{e}^{\frac{1}{2}}}=2{e}^{-\frac{1}{2}}$,
故选:B.
点评 本题主要考查函数的导数的几何意义的应用,求函数的导数,建立方程关系是解决本题的关键.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | a<b<c | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | 8或9 | D. | 17 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com