分析 (Ⅰ)当a=1时,利用绝对值的几何意义,分类讨论,即可解不等式f(x)+f(2x+3)≥5;
(Ⅱ)设x-a=t(t≠0),则$\frac{f(x)}{g(x)}$=$\frac{|t|}{{t}^{2}+1}$=$\frac{1}{|t|+\frac{1}{|t|}}$≤$\frac{1}{2}$,即可求m的取值范围.
解答 解:(Ⅰ)当a=1时,不等式f(x)+f(2x+3)≥5,可化为|x-1|+|2x+2|≥5,
x<-1时,-x+1-2x-2≥5,解得x≤-2,∴x≤-2;
-1≤x≤1时,-x+1+2x+2≥5,解得x≥2,∴无解;
x>1时,x-1+2x+2≥5,解得x≥$\frac{4}{3}$,∴x≥$\frac{4}{3}$;
∴不等式的解集为{x|x≤-2或x≥$\frac{4}{3}$};
(Ⅱ)设x-a=t(t≠0),则$\frac{f(x)}{g(x)}$=$\frac{|t|}{{t}^{2}+1}$=$\frac{1}{|t|+\frac{1}{|t|}}$≤$\frac{1}{2}$,
∵$\frac{f(x)}{g(x)}$<m恒成立,∴m>$\frac{1}{2}$.
点评 本题考查绝对值的几何意义,考查分类讨论的数学思想,考查学生转化问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 3 | C. | $\frac{{2\sqrt{3}}}{3}$ | D. | $\frac{{4\sqrt{3}}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 3 | 4 | 7 | 14 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 17 | x | 4 | 2 |
| 分组 | [70,80) | [80,90) | [90,100) | [100,110) |
| 频数 | 1 | 2 | 8 | 9 |
| 分组 | [110,120) | [120,130) | [130,140) | [140,150] |
| 频数 | 10 | 10 | y | 4 |
| 甲校 | 乙校 | 总计 | |
| 优秀 | |||
| 非优秀 | |||
| 总计 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com