分析 (1)由题意可得:$\frac{T}{2}$=$\frac{π}{3}$,利用周期公式可求ω的值,进而可得函数f(x)的解析式;
(2)利用三角函数的图象关系,结合三角函数的奇偶性即可得到结论.
解答 (本题满分为12分)
解:(1)∵相邻两条对称轴之间的距离等于$\frac{π}{3}$,
∴$\frac{T}{2}$=$\frac{π}{3}$,
∴T=$\frac{2π}{3}$=$\frac{2π}{|ω|}$,
解得:ω=±3,
∵ω>0
∴ω=3,
∴f(x)=sin(3x+$\frac{π}{4}$).
(2)∵f(x)图象向左平移m个单位后所对应的函数是:
g(x)=sin[3(x+m)+$\frac{π}{4}$]=sin(3x+3m+$\frac{π}{4}$),
∵g(x)是偶函数,当且仅当3m+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
∴m=$\frac{kπ}{3}$+$\frac{π}{12}$(k∈Z),从而最小正实数m=$\frac{π}{12}$.
点评 本题主要考查了由y=Asin(ωx+φ)的部分图象确定其解析式,以及函数图象的平移变换,求出函数的解析式是解决本题的关键,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{36}$ | B. | $\frac{1}{6}$ | C. | $\frac{1}{9}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 有99%的把握认为吸烟与患肺炎有关 | |
| B. | 有99%的把握认为吸烟与患肺炎无关 | |
| C. | 有95%的把握认为吸烟与患肺炎有关 | |
| D. | 有95%的把握认为吸烟与患肺炎无关 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com