精英家教网 > 高中数学 > 题目详情

【题目】已知点,且,满足条件的点的轨迹为曲线

1)求曲线的方程;

2)是否存在过点的直线,直线与曲线相交于两点,直线轴分别交于两点,使得?若存在,求出直线的方程;若不存在,请说明理由.

【答案】12)存在,

【解析】

1)由看成到两定点的和为定值,满足椭圆定义,用定义可解曲线的方程.

2)先讨论斜率不存在情况是否符合题意,当直线的斜率存在时,设直线点斜式方程,由,可得,再直线与椭圆联解,利用根的判别式得到关于的一元二次方程求解.

解:

可得,即为

,可得的轨迹是以为焦点,且的椭圆,

,可得,可得曲线的方程为

假设存在过点的直线l符合题意.

当直线的斜率不存在,设方程为,可得为短轴的两个端点,

不成立;

当直线的斜率存在时,设方程为

,可得,即

可得,化为

可得

在椭圆内,可得直线与椭圆相交,

化为,即为,解得

所以存在直线符合题意,且方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)讨论函数的单调性;

2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的参数方程为为参数).以直角坐标系的原点为极点,轴的正半轴为极轴建立坐标系,曲线的极坐标方程为.

(1)求的普通方程和的直角坐标方程;

(2)若过点的直线交于两点,与交于两点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为F1F2,过点F1的直线与C交于AB两点.ABF2的周长为,且椭圆的离心率为.

1)求椭圆C的标准方程:

2)设点P为椭圆C的下顶点,直线PAPBy2分别交于点MN,当|MN|最小时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某蔬菜批发商经销某种新鲜蔬菜(以下简称蔬菜),购入价为200元/袋,并以300元/袋的价格售出,若前8小时内所购进的蔬菜没有售完,则批发商将没售完的蔬菜以150元/袋的价格低价处理完毕(根据经验,2小时内完全能够把蔬菜低价处理完,且当天不再购进).该蔬菜批发商根据往年的销量,统计了100蔬菜在每天的前8小时内的销售量,制成如下频数分布条形图.

1)若某天该蔬菜批发商共购入6蔬菜,有4蔬菜在前8小时内分别被4名顾客购买,剩下2袋在8小时后被另2名顾客购买.现从这6名顾客中随机选2人进行服务回访,则至少选中1人是以150元/袋的价格购买的概率是多少?

2)以上述样本数据作为决策的依据.

i)若今年蔬菜上市的100天内,该蔬菜批发商坚持每天购进6蔬菜,试估计该蔬菜批发商经销蔬菜的总盈利值;

ii)若明年该蔬菜批发商每天购进蔬菜的袋数相同,试帮其设计明年的蔬菜的进货方案,使其所获取的平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业为了解该企业工人组装某产品所用时间,对每个工人组装一个该产品的用时作了记录,得到大量统计数据.从这些统计数据中随机抽取了个数据作为样本,得到如图所示的茎叶图(单位:分钟).若用时不超过(分钟),则称这个工人为优秀员工.

1)求这个样本数据的中位数和众数;

2)从样本数据用时不超过分钟的工人中随机抽取个,求至少有一个工人是优秀员工的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】石嘴山市第三中学高三年级统计学生的最近20次数学周测成绩(满分150分),现有甲乙两位同学的20次成绩如茎叶图所示:

1)根据茎叶图求甲乙两位同学成绩的中位数,并将同学乙的成绩的频率分布直方图填充完整;

(2)根据茎叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可);

(3)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,记事件为“其中2个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正方体的棱长为2平面.平面截此正方体所得的截面有以下四个结论:

①截面形状可能是正三角形②截面的形状可能是正方形

③截面形状可能是正五边形④截面面积最大值为

则正确结论的编号是(

A.①④B.①③C.②③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为常数.

1)讨论函数的单调性;

2)当为自然对数的底数),时,若方程有两个不等实数根,求实数的取值范围.

查看答案和解析>>

同步练习册答案