【题目】已知函数
.
(1)若曲线
在点
处的切线与直线
垂直,求函数
的单调区间;
(2)若对于任意
都有
成立,试求
的取值范围;
(3)记
.当
时,函数
在区间
上有两个零点,求实数
的取值范围。
【答案】(1)单调增区间是
,单调减区间是
.(2)
(3)![]()
【解析】
(1)先由导数的几何意义求得a,在定义域内,再求出导数大于0的区间,即为函数的增区间,求出导数小于0的区间即为函数的减区间.
(2)根据函数的单调区间求出函数的最小值,要使f(x)>2(a﹣1)恒成立,需使函数的最小值大于2(a﹣1),从而求得a的取值范围.
(3)利用导数的符号求出单调区间,再根据函数g(x)在区间[e﹣1,e]上有两个零点,得到
, 解出实数b的取值范围.
(1)直线
的斜率为1, 函数
)的定义域为
.
因为
,所以
,所以
,
所以
,
.
由
解得
;由
解得
.
所以
得单调增区间是
,单调减区间是
.
(2)
由
解得
;由
解得
.
所以
在区间
上单调递增,在区间
上单调递减,
所以当
时,函数
取得最小值
.
因为对于任意
都有
成立,
所以
即可.
则
,
即
,解得
,
所以
得取值范围是
.
(3)依题意得
,则
,
由
解得
,由
解得
.
所以函数
在区间
上有两个零点,
所以
,解得
.
所以
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】某工厂有两个车间生产同一种产品,第一车间有工人200人,第二车间有工人400人,为比较两个车间工人的生产效率,采用分层抽样的方法抽取工人,并对他们中每位工人生产完成一件产品的时间(单位:min)分别进行统计,得到下列统计图表(按照[55,65),[65,75),[75,85),[85,95]分组).
分组 | 频数 |
[55,65) | 2 |
[65,75) | 4 |
[75,85) | 10 |
[85,95] | 4 |
合计 | 20 |
第一车间样本频数分布表
(Ⅰ)分别估计两个车间工人中,生产一件产品时间小于75min的人数;
(Ⅱ)分别估计两车间工人生产时间的平均值,并推测哪个车间工人的生产效率更高?(同一组中的数据以这组数据所在区间中点的值作代表)
(Ⅲ)从第一车间被统计的生产时间小于75min的工人中,随机抽取3人,记抽取的生产时间小于65min的工人人数为随机变量X,求X的分布列及数学期望.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l至11kg)频数分布表如下(单位: kg):
分组 | | | | | |
频数 | 10 | 15 | 45 | 20 | 10 |
以各组数据的中间值代表这组数据的平均值,将频率视为概率.
(1)由种植经验认为,种植园内的水果质量
近似服从正态分布
,其中
近似为样本平均数
近似为样本方差
.请估算该种植园内水果质量在
内的百分比;
(2)现在从质量为
的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量
的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为
元,求
的分布列及数学期望.
附:
,则
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆
,左、右焦点分别为
,
,右顶点为
,上顶点为
,
为椭圆上在第一象限内一点.
![]()
(1)若
.
①求椭圆的离心率
;
②求直线
的斜率.
(2)若
,
,
成等差数列,且
,求直线
的斜率的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知各项均为正数的等比数列
的公比
,且
,
是方程
的两根,记
的前n项和为
.
(1)若
,
,
依次成等差数列,求m的值;
(2)设
,数列
的前n项和为
,若
,求n的最小值;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com