精英家教网 > 高中数学 > 题目详情

【题目】如图,已知椭圆,左、右焦点分别为,右顶点为,上顶点为为椭圆上在第一象限内一点.

1)若

①求椭圆的离心率

②求直线的斜率.

2)若成等差数列,且,求直线的斜率的取值范围.

【答案】1)① ;(2.

【解析】

1)①根据,即,可得离心率;②设的直线方程,由,得即可求得斜率;

2)根据得离心率的范围,根据成等差数列,计算化简得,平方处理成关于离心率的函数关系,利用函数单调性求范围.

解:(1)①因为,所以

所以,即,所以.

②设的直线方程为

因为,所以

所以,则

因为在第一象限,所以

所以

因为,所以,所以.

2)设,则,因为在第一象限,所以

,所以

因为成等差数列,所以

所以,所以,所以

所以,所以,又由已知,所以

因为,所以

因为

,所以

因为,所以

所以,所以

因为为椭圆上在第一象限内一点,所以,所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】正四面体ABCD的体积为1O为其中心,正四面体EFGH与正四面体ABCD关于点O对称,则这两个正四面体的公共部分的体积为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知抛物线,过抛物线焦点且与轴垂直的直线与抛物线相交于两点,且的周长为.

(1)求抛物线的方程;

(2)若过焦点且斜率为1的直线与抛物线相交于两点,过点分别作抛物线的切线,切线相交于点,求:的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若曲线在点处的切线与直线垂直,求函数的单调区间;

(2)若对于任意都有成立,试求的取值范围;

(3)记.时,函数在区间上有两个零点,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】早在一千多年之前,我国已经把溢流孔用于造桥技术,以减轻桥身重量和水流对桥身的冲击,现设桥拱上有如图所示的4个溢流孔,桥拱和溢流孔轮廓线均为抛物线的一部分,且四个溢流孔轮廓线相同.根据图上尺寸,在平面直角坐标系中,桥拱所在抛物线的方程为_______,溢流孔与桥拱交点的坐标为_______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一个各个面上均涂有颜色的正方体锯成个同样大小的小正方体,从这些小正方体中任意取两个,这两个都恰是两面涂色的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】祖暅(公元前5~6世纪)是我国齐梁时代的数学家,是祖冲之的儿子,他提出了一条原原理:“幂势既同,则积不容异.”这里的“幂”指水平截面的面积,“势”指高。这句话的意思是:两个等高的几何体若在所有等高处的水平截面的面积相等,则这两个几何体体积相等。设由椭圆 所围成的平面图形绕 轴旋转一周后,得一橄榄状的几何体(称为椭球体),课本中介绍了应用祖暅原理求球体体积公式的做法,请类比此法,求出椭球体体积,其体积等于( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】前些年有些地方由于受到提高的影响,部分企业只重视经济效益而没有树立环保意识,把大量的污染物排放到空中与地下,严重影响了人们的正常生活,为此政府进行强制整治,对不合格企业进行关闭、整顿,另一方面进行大量的绿化来净化和吸附污染物.通过几年的整治,环境明显得到好转,针对政府这一行为,老百姓大大点赞.

(1)某机构随机访问50名居民,这50名居民对政府的评分(满分100分)如下表:

分数

频数

2

3

11

14

11

9

请在答题卡上作出居民对政府的评分频率分布直方图:

(2)当地环保部门随机抽测了2018年11月的空气质量指数,其数据如下表:

空气质量指数(

0-50

50-100

100-150

150-200

天数

2

18

8

2

用空气质量指数的平均值作为该月空气质量指数级别,求出该月空气质量指数级别为第几级?(同一组数据用该组数据的区间中点值作代表,将频率视为概率)(相关知识参见附表)

(3)空气受到污染,呼吸系统等疾病患者最易感染,根据历史经验,凡遇到空气轻度污染,小李每天会服用有关药品,花费50元,遇到中度污染每天服药的费用达到100元.环境整治前的2015年11月份小李因受到空气污染患呼吸系统等疾病花费了5000元,试估计2018年11月份(参考(2)中表格数据)小李比以前少花了多少钱的医药费?

附:

空气质量指数(

0-50

50-100

100-150

150-200

200-300

空气质量指数级别

空气质量指数

轻度污染

中度污染

重度污染

严重污染

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知棱柱的底面是菱形,且ABCDF为棱的中点,M为线段的中点.

1)求证:ABCD

2)判断直线MF与平面的位置关系,并证明你的结论;

3)求三棱锥的体积.

查看答案和解析>>

同步练习册答案