精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,已知抛物线,过抛物线焦点且与轴垂直的直线与抛物线相交于两点,且的周长为.

(1)求抛物线的方程;

(2)若过焦点且斜率为1的直线与抛物线相交于两点,过点分别作抛物线的切线,切线相交于点,求:的值.

【答案】(1);(2)0.

【解析】

(1)将代入抛物线的方程可得点的坐标分别为,进而利用三角形的周长为,列出方程,求得,即可得到抛物线的方程;

(2)将直线方程为与抛物线的方程联立,利用根与系数的关系,得到直线的方程,进而得到点的坐标为,再利用抛物线的几何性质,即可作出证明。

(1)由题意知,焦点的坐标为

代入抛物线的方程可求得,解得

即点的坐标分别为

又由

可得的周长为,即,解得

故抛物线的方程为.

(2)由(1)得,直线方程为

联立方程消去整理为:,则

所以.

又因为,则

∴可得直线的方程为,整理为.

同理直线的方程为.

联立方程,解得,则点的坐标为.

由抛物线的几何性质知

.

.

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知,则对任意非零实数,方程 的解集不可能为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的准线为,其焦点为F,点B是抛物线C上横坐标为的一点,若点B到的距离等于

(1)求抛物线C的方程,

(2)设A是抛物线C上异于顶点的一点,直线AO交直线于点M,抛物线C在点A处的切线m交直线于点N,求证:以点N为圆心,以为半径的圆经过轴上的两个定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一片产量很大的水果种植园,在临近成熟时随机摘下某品种水果100个,其质量(均在l11kg)频数分布表如下(单位: kg):

分组

频数

10

15

45

20

10

以各组数据的中间值代表这组数据的平均值,将频率视为概率.

1)由种植经验认为,种植园内的水果质量近似服从正态分布,其中近似为样本平均数近似为样本方差.请估算该种植园内水果质量在内的百分比;

2)现在从质量为 的三组水果中用分层抽样方法抽取14个水果,再从这14个水果中随机抽取3个.若水果质量的水果每销售一个所获得的的利润分别为2元,4元,6元,记随机抽取的3个水果总利润为元,求的分布列及数学期望.

附: ,则.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】七巧板是古代中国劳动人民发明的一种中国传统智力玩具,它由五块等腰直角三角形,一块正方形和一块平行四边形共七块板组成.清陆以湉《冷庐杂识》卷一中写道:近又有七巧图,其式五,其数七,其变化之式多至千余.体物肖形,随手变幻,盖游戏之具,足以排闷破寂,故世俗皆喜为之.如图是一个用七巧板拼成的正方形,若在此正方形中任取一点,则此点取自阴影部分的概率为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

讨论函数的图象的交点个数;

若函数的图象无交点,设直线与的数的图象分别交于点P证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,对于,均有,则实数的取值范围是(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆,左、右焦点分别为,右顶点为,上顶点为为椭圆上在第一象限内一点.

1)若

①求椭圆的离心率

②求直线的斜率.

2)若成等差数列,且,求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为坐标原点,抛物线与直线交于点两点,且.

(1)求抛物线的方程;

(2)线段的中点为,过点且斜率为的直线交抛物线两点,若直线分别与直线交于两点,当时,求斜率的值.

查看答案和解析>>

同步练习册答案