精英家教网 > 高中数学 > 题目详情
9.已知的取值如表所示:
x234
y645
如果y与x线性相关,且线性回归方程$y=bx+\frac{13}{2}$,则$\stackrel{∧}{b}$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{4}$D.$-\frac{5}{6}$

分析 根据线性回归方程过样本中心点,求出x、y的平均数代入计算$\stackrel{∧}{b}$的值.

解答 解:根据表中数据,计算
$\overline{x}$=$\frac{1}{3}$×(2+3+4)=3,$\overline{y}$=$\frac{1}{3}$×(6+4+5)=5;
且线性回归方程$y=bx+\frac{13}{2}$过样本中心点,
∴5=$\stackrel{∧}{b}$×3+$\frac{13}{2}$,
解得$\stackrel{∧}{b}$=-$\frac{1}{2}$.
故选:A.

点评 本题考查了线性回归方程过样本中心点的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若x,y满足约束条件$\left\{\begin{array}{l}{x+y>1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,且目标函数z=ax+2y仅在点(1,0)处取得最小值,则a的取值范围是(  )
A.(-1,2)B.(-4,2)C.(-4,0)D.(-4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一条渐近线方程为y+2x=0,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线$C:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$的左、右焦点分别为F1,F2,过F2的直线与双曲线的右支交于两点A,B,若|AF1|:|AB|=3:4,且F2是AB的一个四等分点,则双曲线C的离心率是(  )
A.$\frac{{\sqrt{5}}}{2}$B.$\frac{{\sqrt{10}}}{2}$C.$\frac{5}{2}$D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知双曲线x2-$\frac{{y}^{2}}{m}$=1的左右焦点分别为F1、F2,过点F2的直线交双曲线右支于A、B两点,若△ABF1是以A为直角顶点的等腰三角形,则实数m的值为4-2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知在${({\root{3}{x}-\frac{1}{{2\root{3}{x}}}})^n}$的展开式中,第6项为常数项.
(Ⅰ)求含x2的项的系数;
(Ⅱ)求展开式中所有的有理项.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设集合A={1,3,7,8},B={1,5,8},则A∪B等于(  )
A..{1,8}B..{1,3,7,8}C..{1,5,7,8}D.{1,3,5,7,8}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=2\sqrt{3}sinxcosx-2{cos^2}x-1,x∈R$.
(I)求函数f(x)的最小正周期和最小值;
(II)在△ABC中,A,B,C的对边分别为a,b,c,已知$c=\sqrt{3},f(C)=0,sinB=2sinA$,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右焦点为F,点B是虚轴上的一个顶点,线段BF与双曲线C的右支交于点A,若$\overrightarrow{BA}$=2$\overrightarrow{AF}$,且|$\overrightarrow{BF}$|=4,则双曲线C的方程为(  )
A.$\frac{{x}^{2}}{6}$-$\frac{{y}^{2}}{5}$=1B.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{12}$=1C.$\frac{{x}^{2}}{8}$-$\frac{{y}^{2}}{4}$=1D.$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{6}$=1

查看答案和解析>>

同步练习册答案