精英家教网 > 高中数学 > 题目详情
1.设集合A={1,3,7,8},B={1,5,8},则A∪B等于(  )
A..{1,8}B..{1,3,7,8}C..{1,5,7,8}D.{1,3,5,7,8}

分析 利用并集定义直接求解.

解答 解:∵集合A={1,3,7,8},B={1,5,8},
∴A∪B={1,3,5,7,8}.
故选:D.

点评 本题考查并集的求法,是基础题,解题时要认真审题,注意并集定义的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函f(x)=sin(2x-$\frac{π}{6}$)-cos2x.
(Ⅰ)求函数f(x)的最小正周期、最大值及取得最大值时x的集合;
(Ⅱ)设△ABC内角A、B、C的对边分别为a、b、c,若$f(\frac{B}{2})=-\frac{{\sqrt{3}}}{2}$,b=1,$c=\sqrt{3}$,且a>b,求角B和角C.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左、右焦点分别为F1、F2,焦距为2c(c>0),抛物线y2=2cx的准线交双曲线左支于A,B两点,且∠AOB=120°(O为坐标原点),则该双曲线的离心率为(  )
A.$\sqrt{3}+1$B.2C.$\sqrt{2}+1$D.$\sqrt{5}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知的取值如表所示:
x234
y645
如果y与x线性相关,且线性回归方程$y=bx+\frac{13}{2}$,则$\stackrel{∧}{b}$=(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{1}{4}$D.$-\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知圆锥的表面积为6,且它的侧面展开图是一个半圆,则这个圆锥的底面半径为(  )
A.$\sqrt{\frac{2}{π}}$B.$\sqrt{\frac{1}{π}}$C.$\sqrt{2π}$D.$\sqrt{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)在区间($\frac{π}{4}$,$\frac{π}{2}$)内是增函数,则(  )
A.f($\frac{π}{4}$)=-1B.f(x)的周期为$\frac{π}{2}$C.ω的最大值为4D.f($\frac{3π}{4}$)=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.若实数x,y满足$\left\{\begin{array}{l}x-y+1≤0\\ x>0\\ y≤2\end{array}\right.$则$\frac{2y}{2x+1}$的取值范围是[$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=cos(ωx-$\frac{π}{3}$)-cosωx(x∈R,ω为常数,且1<ω<2),函数f(x)的图象关于直线x=π对称.
(Ⅰ)求函数f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的对边分别为a,b,c,若a=1.f($\frac{3}{5}$A)=$\frac{1}{2}$,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=-x3+1+a($\frac{1}{e}$≤x≤e,e是自然对数的底)与g(x)=3lnx的图象上存在关于x轴对称的点,则实数a的取值范围是(  )
A.[0,e3-4]B.[0,$\frac{1}{{e}^{3}}$+2]C.[$\frac{1}{{e}^{3}}$+2,e3-4]D.[e3-4,+∞)

查看答案和解析>>

同步练习册答案