µ÷²é±íÃ÷£¬ÖÐÄêÈ˵ijɾ͸ÐÓëÊÕÈ롢ѧÀú¡¢Ö°ÒµµÄÂúÒâ¶ÈµÄÖ¸±êÓм«Ç¿µÄÏà¹ØÐÔ£®ÏÖ½«ÕâÈýÏîµÄÂúÒâ¶ÈÖ¸±ê·Ö±ð¼ÇΪx£¬y£¬z£¬²¢¶ÔËüÃǽøÐÐÁ¿»¯£º0±íʾ²»ÂúÒ⣬1±íʾ»ù±¾ÂúÒ⣬2±íʾÂúÒ⣬ÔÙÓÃ×ÛºÏÖ¸±êw=x+y+zµÄÖµÆÀ¶¨ÖÐÄêÈ˵ijɾ͸еȼ¶£ºÈôw¡Ý4£¬Ôò³É¾Í¸ÐΪһ¼¶£»Èô2¡Üw¡Ü3£¬Ôò³É¾Í¸ÐΪ¶þ¼¶£»Èô0¡Üw¡Ü1£¬Ôò³É¾Í¸ÐΪÈý¼¶£®ÎªÁËÁ˽âĿǰijȺÌåÖÐÄêÈ˵ijɾ͸ÐÇé¿ö£¬Ñо¿ÈËÔ±Ëæ»ú²É·ÃÁ˸ÃȺÌåµÄ10ÃûÖÐÄêÈË£¬µÃµ½ÈçϽá¹û£º
ÈËÔ±±àºÅA1A2A3A4A5
£¨x£¬y£¬z£©£¨1£¬1£¬2£©£¨2£¬1£¬1£©£¨2£¬2£¬2£©£¨0£¬1£¬1£©£¨1£¬2£¬1£©
ÈËÔ±±àºÅA6A7A8A9A10
£¨x£¬y£¬z£©£¨1£¬2£¬2£©£¨1£¬1£¬1£©£¨1£¬2£¬2£©£¨1£¬0£¬0£©£¨1£¬1£¬1£©
£¨¢ñ£©Èô¸ÃȺÌåÓÐ200ÈË£¬ÊÔ¹À¼Æ¸ÃȺÌåÖгɾ͸еȼ¶ÎªÈý¼¶µÄÈËÊýÊǶàÉÙ£¿
£¨¢ò£©´Ó³É¾Í¸ÐµÈ¼¶ÎªÒ»¼¶µÄ±»²É·ÃÕßÖÐËæ»ú³éÈ¡Á½ÈË£¬ÕâÁ½È˵Ä×ÛºÏÖ¸±êw¾ùΪ4µÄ¸ÅÂÊÊǶàÉÙ£¿
¿¼µã£ºÁоٷ¨¼ÆËã»ù±¾Ê¼þÊý¼°Ê¼þ·¢ÉúµÄ¸ÅÂÊ
רÌ⣺¸ÅÂÊÓëͳ¼Æ
·ÖÎö£º£¨¢ñ£©ÏÈÇó³öÑù±¾µÄƵÂÊ£¬ÔÙÓÃÑù±¾µÄƵÂʹÀ¼Æ×ÜÌåµÄƵÂʼ´¿ÉÇó³ö£¬³É¾Í¸ÐµÈ¼¶ÎªÈý¼¶µÄÈËÊý£»
£¨¢ò£©·Ö±ðÁоٳö³É¾Í¸ÐµÈ¼¶ÎªÒ»¼¶µÄ±»²É·ÃÕßÖÐËæ»ú³éÈ¡Á½È˵ÄËùÓлù±¾Ê¼þ£¬ÔÚÕÒµ½Âú×ãÌõ¼þ¼´Á½È˵Ä×ÛºÏÖ¸±êw¾ùΪ4µÄ»ù±¾Ê¼þ£¬¸ù¾Ý¸ÅÂʹ«Ê½¼ÆËã¼´¿É£®
½â´ð£º ½â£º£¨¢ñ£©¼ÆËã10Ãû±»²É·ÃÕßµÄ×ÛºÏÖ¸±ê£¬¿ÉµÃÏÂ±í£º
ÈËÔ±±àºÅA1A2A3A4A5A6A7A8A9A10
×ÛºÏÖ¸±ê4462453513
ÓÉÉϱí¿ÉÖª£º³É¾Í¸ÐΪÈý¼¶£¨¼´0¡Üw¡Ü1£©µÄÖ»ÓÐA9һ룬ÆäƵÂÊΪ
1
10
£®
ÓÃÑù±¾µÄƵÂʹÀ¼Æ×ÜÌåµÄƵÂÊ£¬¿É¹À¼Æ¸ÃȺÌåÖгɾ͸еȼ¶ÎªÈý¼¶µÄÈËÊýÓÐ200¡Á
1
10
=20
£®
£¨¢ò£©ÉèʼþAΪ¡°´Ó³É¾Í¸ÐµÈ¼¶ÊÇÒ»¼¶µÄ±»²É·ÃÕßÖÐËæ»ú³éÈ¡Á½ÈË£¬ËûÃǵÄ×ÛºÏÖ¸±êw¾ùΪ4¡±£®ÓÉ£¨¢ñ£©¿ÉÖª³É¾Í¸ÐÊÇÒ»¼¶µÄ£¨w¡Ý4£©ÓУºA1£¬A2£¬A3£¬A5£¬A6£¬A8£¬¹²6룬´ÓÖÐËæ»ú³éÈ¡Á½ÈË£¬ËùÓпÉÄܵĽá¹ûΪ£º{A1£¬A2}£¬{A1£¬A3}£¬{A1£¬A5}£¬{A1£¬A6}£¬{A1£¬A8}£¬{A2£¬A3}£¬{A2£¬A5}£¬{A2£¬A6}£¬{A2£¬A8}£¬{A3£¬A5}£¬{A3£¬A6}£¬{A3£¬A8}£¬{A5£¬A6}£¬{A5£¬A8}£¬{A6£¬A8}£¬¹²15ÖÖ£®
ÆäÖÐ×ÛºÏÖ¸±êw=4ÓУºA1£¬A2£¬A5£¬¹²3Ãû£¬Ê¼þA·¢ÉúµÄËùÓпÉÄܽá¹ûΪ£º{A1£¬A2}£¬{A1£¬A5}£¬{A2£¬A5}£¬¹²3ÖÖ£¬
ËùÒÔP(A)=
3
15
=
1
5
£®
µãÆÀ£º±¾Ð¡ÌâÖ÷Òª¿¼²é¸ÅÂÊ¡¢Í³¼ÆµÈ»ù´¡ÖªÊ¶£¬¿¼²éÊý¾Ý´¦ÀíÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢Ó¦ÓÃÒâʶ£¬¿¼²é±ØÈ»Óë»òȻ˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªsin¦Á-cos¦Á=-
5
5
£¬180¡ã£¼¦Á£¼270¡ã£¬Çótan¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÔÚËÄÀâ×¶P-ABCDÖУ¬µ×ÃæABCDΪÁâÐΣ¬¡ÏBAD=60¡ã£¬QΪADµÄÖе㣬PA=PD=AD=2£®
£¨1£©ÇóÖ¤£ºAD¡ÍÆ½ÃæPQB£»
£¨2£©ÈôPM=
1
3
PC£¬Æ½ÃæPAD¡ÍÆ½ÃæABCD£¬Çó¶þÃæ½ÇM-BQ-CµÄ´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÅ×ÎïÏßC£ºx2=2py£¨p£¾0£©£¬Ö±Ïßl£ºy=x+1ÓëÅ×ÎïÏßC½»ÓÚA£¬BÁ½µã£¬ÉèÖ±ÏßOA£¬OBµÄбÂÊ·Ö±ðΪk1£®k2£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¬ÇÒk1•k2=-
1
4
£®
£¨1£©ÇópµÄÖµ£»
£¨2£©Èçͼ£¬ÒÑÖªµãM£¨x0£¬y0£©ÎªÔ²£ºx2+y2-y=0ÉÏÒìÓÚOµãµÄ¶¯µã£¬¹ýµãMµÄÖ±Ïßm½»Å×ÎïÏßCÓÚE£¬FÁ½µã£®ÈôMΪÏß¶ÎEFµÄÖе㣬Çó|EF|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
£¬
b
Âú×ã|
a
|=5£¬|
b
|=4£¬|
b
-
a
|=
61
£¬Ôò
a
Óë
b
µÄ¼Ð½Ç¦È=£¨¡¡¡¡£©
A¡¢150¡ãB¡¢120¡ã
C¡¢60¡ãD¡¢30¡ã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖªÏòÁ¿
a
=£¨sinx£¬cosx£©£¬
b
=£¨cosx£¬sinx-2cosx£©£¬f£¨x£©=
a
b
£®
£¨1£©Çóf£¨x£©µÄµ¥µ÷Çø¼ä£»
£¨2£©Éè0¡Üx¡Ü
¦Ð
2
£¬¢ÙÈô
a
¡Í
b
£¬Çóx£»¢ÚÇóf£¨x£©µÄÖµÓò£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÈçͼËùʾ£¬ÔÚµÈÑüÖ±½ÇÈý½ÇÐÎABCÖУ¬AC=AB=2
2
£¬EΪABµÄÖе㣬µãFÔÚBC ÉÏ£¬ÇÒEF¡ÍBC£®ÏÖÑØEF ½«¡÷BEF ÕÛ1Æðµ½¡÷PEFµÄλÖã¬Ê¹PF¡ÍCF£¬µãD ÔÚPCÉÏ£¬ÇÒPD=
1
2
DC£®
£¨1£©ÇóÖ¤£ºAD¡ÎÆ½ÃæPEF£»
£¨2£©Çó¶þÃæ½ÇA-PC-FµÄÓàÏÒÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Éè·ÇÁãÏòÁ¿ÏòÁ¿
OA
=
a
£¬
OB
=
b
£¬ÒÑÖª|
a
|=2|
b
|£¬£¨
a
+
b
£©¡Í
b
£®
£¨1£©Çó
a
Óë
b
µÄ¼Ð½Ç£»
£¨2£©ÔÚÈçͼËùʾµÄÖ±½Ç×ø±êϵxOyÖУ¬ÉèB£¨1£¬0£©£¬ÒÑÖª
M£¨
1
2
£¬
5
3
6
£©£¬
OM
=¦Ë1
a
+¦Ë2
b
£¨¦Ë1£¬¦Ë2¡ÊR£©£¬Çó¦Ë1+¦Ë2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª£ºÈçͼ£¬ÔÚRt¡÷ABCÖУ¬AB=BC£¬ÒÔABΪֱ¾¶µÄ¡ÑO½»ACÓÚµãD£¬¹ýµãD×÷DE¡ÍBC£¬´¹×ãΪE£¬Á¬½ÓEA½»¡ÑOÓÚµãF£®ÇóÖ¤£º
£¨¢ñ£©DEÊÇ¡ÑOµÄÇÐÏߣ»
£¨¢ò£©BE•CE=EF•EA£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸