精英家教网 > 高中数学 > 题目详情
如图所示,在等腰直角三角形ABC中,AC=AB=2
2
,E为AB的中点,点F在BC 上,且EF⊥BC.现沿EF 将△BEF 折1起到△PEF的位置,使PF⊥CF,点D 在PC上,且PD=
1
2
DC.
(1)求证:AD∥平面PEF;
(2)求二面角A-PC-F的余弦值.
考点:二面角的平面角及求法,直线与平面平行的判定
专题:空间位置关系与距离,空间角
分析:(1)建立以F为原点,分别以FC、FE、FP所在直线为x,y,z轴的空间直角坐标系,求出平面PEF的一个法向量,由此利用向量法能证明AD∥平面PEF.
(2)求出平面APC的一个法向量和平面PCF的一个法向量,由此利用向量法能求出二面角A-PC-F的余弦值.
解答: 解:(1)证明:∵EF⊥BC,PF⊥CF,
∴建立以F为原点,分别以FC、FE、FP所在直线为x,y,z轴的空间直角坐标系,
如右图所示,则F(0,0,0),C(3,0,0),A(1,2,0),D(1,0,
2
3
),
由题意知
FC
=(3,0,0)为平面PEF的一个法向量,
又∵
AD
=(0,-2,
2
3
),∴
FC
AD
=0,
又AD?平面PEF,∴AD∥平面PEF.
(2)解:由(1)知P(0,0,1),E(0,1,0),
n
=(x1,y1,z1),
n
PC
=3x1-z1=0
n
AC
=2x1-2y1=0

令x1=1,解得
n
=(1,1,3)为平面APC的一个法向量,
又∵
FE
=(0,1,0)为平面PCF的一个法向量,
∴cos<
n
FE
>=
FE
n
|
FE
|•|
n
|
=
11
11

∴二面角A-PC-F的余弦值为
11
11
点评:本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要注意空间思维能力的培养,注意向量法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

计算:(x1-x2)+(x2-x1)(x1x2)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在四棱锥P-ABCD中,
AB
=(4,-2,3),
AD
=(-4,1,0),
AP
=(-6,2,-8),则这个四棱锥的高h等于(  )
A、1B、2C、13D、26

查看答案和解析>>

科目:高中数学 来源: 题型:

调查表明,中年人的成就感与收入、学历、职业的满意度的指标有极强的相关性.现将这三项的满意度指标分别记为x,y,z,并对它们进行量化:0表示不满意,1表示基本满意,2表示满意,再用综合指标w=x+y+z的值评定中年人的成就感等级:若w≥4,则成就感为一级;若2≤w≤3,则成就感为二级;若0≤w≤1,则成就感为三级.为了了解目前某群体中年人的成就感情况,研究人员随机采访了该群体的10名中年人,得到如下结果:
人员编号A1A2A3A4A5
(x,y,z)(1,1,2)(2,1,1)(2,2,2)(0,1,1)(1,2,1)
人员编号A6A7A8A9A10
(x,y,z)(1,2,2)(1,1,1)(1,2,2)(1,0,0)(1,1,1)
(Ⅰ)若该群体有200人,试估计该群体中成就感等级为三级的人数是多少?
(Ⅱ)从成就感等级为一级的被采访者中随机抽取两人,这两人的综合指标w均为4的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知O为坐标原点,点A(2,0),B(0,2),C(cosα,sinα),且0<α<π.若|
OA
+
OC
|=
7
,则
OB
OC
的夹角为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设3,4,x是一个钝角三角形的三边长,且x是最大边,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C:y2=2px(p>0)的焦点为F,A(3,t)(t>0)为抛物线C上一点,过点A的直线l交x轴的正半轴于点D,且△ADF为正三角形,则p=(  )
A、2B、18
C、2或18D、4或36

查看答案和解析>>

科目:高中数学 来源: 题型:

cos
π
3
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

若点P(x,y)在直线x+y=12上运动,则
x2+1
+
y2+16
的最小值为(  )
A、
37
+2
13
B、
2
+
137
C、13
D、1+4
16

查看答案和解析>>

同步练习册答案