精英家教网 > 高中数学 > 题目详情
cos
π
3
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6
考点:三角函数的化简求值
专题:三角函数的求值
分析:直接利用特殊角的三角函数化简求解即可.
解答: 解:cos
π
3
-tan
π
4
+
3
4
tan2
π
6
-sin
π
6
+cos2
π
6

=
1
2
-1+
3
4
×(
3
3
)
2
-
1
2
+(
3
2
)
2

=0.
点评:本题考查三角函数化简求值,特殊角的三角函数值的求法,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为菱形,∠BAD=60°,Q为AD的中点,PA=PD=AD=2.
(1)求证:AD⊥平面PQB;
(2)若PM=
1
3
PC,平面PAD⊥平面ABCD,求二面角M-BQ-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,在等腰直角三角形ABC中,AC=AB=2
2
,E为AB的中点,点F在BC 上,且EF⊥BC.现沿EF 将△BEF 折1起到△PEF的位置,使PF⊥CF,点D 在PC上,且PD=
1
2
DC.
(1)求证:AD∥平面PEF;
(2)求二面角A-PC-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设非零向量向量
OA
=
a
OB
=
b
,已知|
a
|=2|
b
|,(
a
+
b
)⊥
b

(1)求
a
b
的夹角;
(2)在如图所示的直角坐标系xOy中,设B(1,0),已知
M(
1
2
5
3
6
),
OM
1
a
2
b
(λ1,λ2∈R),求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
x+2
+k,k为已知的实数.
(1)求函数f(x)的值域;并判断其在定义域上的单调性(不必证明);
(2)当k=-2时,设f(x)≤0的解集为A,函数g(x)=lg(sin2
π
6
x-3sin
π
6
xcos
π
6
x+acos2
π
6
x)的定义域为B,若(A∪B)⊆B,求实数a的取值范围;
(3)若存在实数-2≤a<b,使f(x)在[a,b]上的值域为[2a,2b],求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,正方形ABCD边长为2,圆D的半径为1,E是圆D上任意一点,则
AE
CE
的最小值为(  )
A、1+2
2
B、-1-2
2
C、1-
2
D、1-2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

π
2
(xcosx+sinx)dx=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知:如图,在Rt△ABC中,AB=BC,以AB为直径的⊙O交AC于点D,过点D作DE⊥BC,垂足为E,连接EA交⊙O于点F.求证:
(Ⅰ)DE是⊙O的切线;
(Ⅱ)BE•CE=EF•EA.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}的前n项和Sn,且2
Sn
=an十1,n∈N*
(1)试求数列{an}的通项公式,
(2)设bn=
1
anan+1
,数列{bn}的前n项和为Bn,求证:Bn
1
2

查看答案和解析>>

同步练习册答案