6£®ÈçͼÊÇÒ»¡°T¡±ÐÍË®ÇþµÄÆ½ÃæÊÓͼ£¨¸©ÊÓͼ£©£¬Ë®ÇþµÄÄϱ±·½ÏòºÍ¶«Î÷·½ÏòÖá½ØÃæ¾ùΪ¾ØÐΣ¬Äϱ±ÏòÇþ¿íΪ4m£¬¶«Î÷ÏòÇþ¿í$\sqrt{2}m$£¨´Ó¹Õ½Ç´¦£¬¼´Í¼ÖÐA£¬B´¦¿ªÊ¼£©£®¼Ù¶¨ÇþÄÚµÄË®ÃæÊ¼ÖÕ±£³ÖˮƽλÖ㨼´Î޸߶Ȳ£®
£¨1£©ÔÚË®Æ½ÃæÄÚ£¬¹ýµãAµÄÒ»ÌõÖ±ÏßÓëË®ÇþµÄÄÚ±Ú½»ÓÚP£¬QÁ½µã£¬ÇÒÓëË®ÇþµÄÒ»±ßµÄ¼Ð½ÇΪ$¦È£¨0£¼¦È£¼\frac{¦Ð}{2}£©$£¬½«Ïß¶ÎPQµÄ³¤¶Èl±íʾΪ¦ÈµÄº¯Êý£»
£¨2£©Èô´ÓÄÏÃæÆ¯À´Ò»¸ù³¤Îª7mµÄ±ÊÖ±µÄÖñ¸Í£¨´Öϸ²»¼Æ£©£¬Öñ¸ÍʼÖÕ¸¡ÓÚË®Æ½ÃæÄÚ£¬ÇÒ²»·¢ÉúÐα䣬ÎÊ£ºÕâ¸ùÖñ¸ÍÄÜ·ñ´Ó¹Õ½Ç´¦Ò»Ö±Æ¯Ïò¶«Î÷ÏòµÄË®Çþ£¨²»»á¿¨×¡£©£¿Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Çó³öPA£¬QA£¬¼´¿É½«Ïß¶ÎPQµÄ³¤¶Èl±íʾΪ¦ÈµÄº¯Êý£»
£¨2£©Çóµ¼Êý£¬È·¶¨º¯ÊýµÄµ¥µ÷ÐÔ£¬¼´¿ÉµÃ³ö½áÂÛ£®

½â´ð ½â£º£¨1£©ÓÉÌâÒ⣬$PA=\frac{{\sqrt{2}}}{sin¦È}$£¬$QA=\frac{4}{cos¦È}$£¬
ËùÒÔl=PA+QA£¬¼´$l=\frac{{\sqrt{2}}}{sin¦È}+\frac{4}{cos¦È}$£¨$0£¼¦È£¼\frac{¦Ð}{2}$£©£®¡­£¨4·Ö£©
£¨2£©Éè$f£¨¦È£©=\frac{{\sqrt{2}}}{sin¦È}+\frac{4}{cos¦È}$£¬$¦È¡Ê£¨0£¬\frac{¦Ð}{2}£©$£®
ÓÉ$f'£¨¦È£©=-\frac{{\sqrt{2}cos¦È}}{{{{sin}^2}¦È}}+\frac{4sin¦È}{{{{cos}^2}¦È}}=\frac{{\sqrt{2}£¨2\sqrt{2}{{sin}^3}¦È-{{cos}^3}¦È£©}}{{{{sin}^2}¦È{{cos}^2}¦È}}$£¬¡­£¨6·Ö£©
Áîf'£¨¦È£©=0£¬µÃ$tan{¦È_0}=\frac{{\sqrt{2}}}{2}$£®    ¡­£¨8·Ö£©
ÇÒµ±¦È¡Ê£¨0£¬¦È0£©£¬f'£¨¦È£©£¼0£»µ±$¦È¡Ê£¨{¦È_0}£¬\frac{¦Ð}{2}£©$£¬f'£¨¦È£©£¾0£¬
ËùÒÔ£¬f£¨¦È£©ÔÚ£¨0£¬¦È0£©Éϵ¥µ÷µÝ¼õ£»ÔÚ$£¨{¦È_0}£¬\frac{¦Ð}{2}£©$Éϵ¥µ÷µÝÔö£¬
ËùÒÔ£¬µ±¦È=¦È0ʱ£¬f£¨¦È£©È¡µÃ¼«Ð¡Öµ£¬¼´Îª×îСֵ£®¡­£¨10·Ö£©
µ±$tan{¦È_0}=\frac{{\sqrt{2}}}{2}$ʱ£¬$sin{¦È_0}=\frac{1}{{\sqrt{3}}}$£¬$cos{¦È_0}=\frac{{\sqrt{2}}}{{\sqrt{3}}}$£¬
ËùÒÔf£¨¦È£©µÄ×îСֵΪ$3\sqrt{6}$£¬¡­£¨12·Ö£©
¼´Õâ¸ùÖñ¸ÍÄÜͨ¹ý¹Õ½Ç´¦µÄ³¤¶ÈµÄ×î´óֵΪ$3\sqrt{6}$m£®
ÒòΪ$3\sqrt{6}£¾7$£¬ËùÒÔÕâ¸ùÖñ¸ÍÄܴӹսǴ¦Ò»Ö±Æ¯Ïò¶«Î÷ÏòµÄË®Çþ£®¡­£¨14·Ö£©

µãÆÀ ±¾Ì⿼²éÀûÓÃÊýѧ֪ʶ½â¾öʵ¼ÊÎÊÌ⣬¿¼²éÈý½Çº¯ÊýÄ£ÐÍ£¬¿¼²éµ¼Êý֪ʶµÄÔËÓã¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Éèf£¨x£©=ax-ln£¨1+x2£©£¬
£¨1£©µ±a=$\frac{4}{5}$ʱ£¬Çóf£¨x£©ÔÚ£¨0£¬+¡Þ£©µÄ¼«Öµ£»
£¨2£©Ö¤Ã÷£ºµ±x£¾0ʱ£¬ln£¨1+x2£©£¼x£»
£¨3£©Ö¤Ã÷£º$£¨1+\frac{1}{2^4}£©£¨1+\frac{1}{3^4}£©¡­£¨1+\frac{1}{n^4}£©£¼e$£¨n¡ÊN*£¬n¡Ý2£¬eΪ×ÔÈ»¶ÔÊýµÄµ×Êý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®ÒÑÖªa=$\frac{2}{¦Ð}\int_{-1}^1{£¨\sqrt{1-{x^2}}+sinx£©dx}$£¬Ôò¶þÏîʽ${£¨x-\frac{a}{x^2}£©^9}$µÄÕ¹¿ªÊ½Öеij£ÊýÏîΪ-84£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑÖªÊýÁÐ{an}Âú×ãan=$\left\{\begin{array}{l}{£¨5-a£©n-11£¬n¡Ü5}\\{{a}^{n-4}£¬n£¾5}\end{array}\right.$£¬ÇÒ{an}ÊǵÝÔöÊýÁУ¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬5£©B£®£¨$\frac{7}{3}$£¬5£©C£®[$\frac{7}{3}$£¬5£©D£®£¨2£¬5£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÔÚ¡÷ABCÖУ¬±ßa¡¢b¡¢c·Ö±ðÊǽÇA¡¢B¡¢CµÄ¶Ô±ß£¬ÈôbcosC=£¨3a-c£©cosB£¬ÔòcosB=$\frac{1}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

11£®£¨1£©ÒÑÖªcos£¨15¡ã+¦Á£©=$\frac{15}{17}$£¬¦Á¡Ê£¨0¡ã£¬90¡ã£©£¬Çósin£¨15¡ã-¦Á£© µÄÖµ£®
£¨2£©ÒÑÖªcos¦Á=$\frac{1}{7}$£¬cos£¨¦Á-¦Â£©=$\frac{13}{14}$£¬ÇÒ0£¼¦Â£¼¦Á£¼$\frac{¦Ð}{2}$£¬Çó¦ÂµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®É躯Êýy=f£¨x£©ÔÚx0´¦¿Éµ¼£¬f¡ä£¨x0£©=a£¬Èôµã£¨x0£¬0£©¼´Îªy=f£¨x£©µÄͼÏóÓëxÖáµÄ½»µã£¬Ôò$\underset{lim}{n¡ú+¡Þ}$[nf£¨x0-$\frac{1}{n}$£©]µÈÓÚ£¨¡¡¡¡£©
A£®+¡ÞB£®aC£®-aD£®ÒÔÉ϶¼²»¶Ô

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖª½Ç¦ÁÖձ߾­¹ýµã$£¨4sin¦È£¬-3sin¦È£©¦È¡Ê£¨{¦Ð£¬\frac{3¦Ð}{2}}£©$£¬Çósin¦Á£¬cos¦Á£¬tan¦Á£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÉèÃüÌâp£ºf£¨x£©=lnx+x2+ax+1ÔÚ£¨0£¬+¡Þ£©ÄÚµ¥µ÷µÝÔö£¬ÃüÌâq£ºa¡Ý-2£¬ÔòpÊÇqµÄ£¨¡¡¡¡£©
A£®³ä·Ö²»±ØÒªÌõ¼þB£®±ØÒª²»³ä·ÖÌõ¼þ
C£®³ä·Ö±ØÒªÌõ¼þD£®¼È²»³ä·ÖÓÖ²»±ØÒªÌõ¼þ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸