3£®Ä³ÆóÒµ¶ÔÆäÉú²úµÄÒ»Åú²úÆ·½øÐмì²â£¬µÃ³öÿ¼þ²úÆ·ÖÐijÖÖÎïÖʺ¬Á¿£¨µ¥Î»£º¿Ë£©µÄƵÂÊ·Ö²¼Ö±·½Í¼ÈçͼËùʾ£®
£¨I£©¹À¼Æ²úÆ·ÖиÃÎïÖʺ¬Á¿µÄƽ¾ùÊý¼°·½²î£¨Í¬Ò»×éÊý¾ÝÓøÃÇø¼äµÄÖеãÖµ×÷´ú±í£©£»
£¨¢ò£©¹æ¶¨²úÆ·µÄ¼¶±ðÈç±í£º
²úÆ·¼¶±ðCBA
ijѺôðÖʺ¬Á¿·¶Î§[60£¬70£©[70£¬80£©[80£¬100]
ÏÖÖʼ첿ÃÅ´ÓÈý¸öµÈ¼¶µÄ²úÆ·ÖвÉÓ÷ֲã³éÑùµÄ·½Ê½³éÈ¡10¼þ²úÆ·£¬ÔÙ´ÓÖÐËæ»ú³éÈ¡3¼þ²úÆ·½øÐмì²â£¬¼ÇÖʼ첿ÃÅ¡°³éµ½B»òC¼¶Æ·µÄ¸öÊýΪ¦Î¡±£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

·ÖÎö £¨¢ñ£©ÀûÓÃÆµÂÊ·Ö²¼Ö±·½Í¼ÄܹÀ¼Æ²úÆ·ÖиÃÎïÖʺ¬Á¿µÄƽ¾ùÊý¼°·½²î£®
£¨¢ò£©°´·Ö²ã³éÑùµÄ·½·¨£¬Ëù³é³öµÄA¼¶Æ·Îª7¼þ£¬BºÍC¼¶Æ·¹²3¼þ£¬¸ù¾ÝÌâÒâ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬·Ö±ðÇó³öÏàÓ¦µÄ¸ÅÂÊ£¬ÓÉ´ËÄÜÇó³ö¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®

½â´ð ½â£º£¨¢ñ£©Æ½¾ùÊý$\overline{x}$=65¡Á0.1+75¡Á0.2+85¡Á0.4+95¡Á0.3=84£¬
·½²îS2=£¨65-84£©2¡Á0.1+£¨75-84£©2¡Á0.2+£¨85-84£©2¡Á0.4+£¨95-84£©2¡Á0.3=89£®
£¨¢ò£©°´·Ö²ã³éÑùµÄ·½·¨£¬´ÓA¼¶Æ·ÖгéÈ¡n1=10¡Á0.7=7¼þ£¬
´ÓB¼¶Æ·ÖгéÈ¡n2=10¡Á0.2=2¼þ£¬
´ÓC¼¶Æ·ÖгéÈ¡n3=10¡Á0.1=1¼þ£¬
¡àËù³é³öµÄA¼¶Æ·Îª7¼þ£¬BºÍC¼¶Æ·¹²3¼þ£¬
¸ù¾ÝÌâÒâ¦ÎµÄ¿ÉÄÜȡֵΪ0£¬1£¬2£¬3£¬
P£¨¦Î=0£©=$\frac{{C}_{3}^{0}{C}_{7}^{3}}{{C}_{10}^{3}}$=$\frac{7}{24}$£¬
P£¨¦Î=1£©=$\frac{{C}_{3}^{1}{C}_{7}^{2}}{{C}_{10}^{3}}$=$\frac{21}{40}$£¬
P£¨¦Î=2£©=$\frac{{C}_{3}^{2}{C}_{7}^{1}}{{C}_{10}^{3}}$=$\frac{7}{40}$£¬
P£¨¦Î=3£©=$\frac{{C}_{3}^{3}{C}_{7}^{0}}{{C}_{10}^{3}}$=$\frac{1}{120}$£¬
¡à¦ÎµÄ·Ö²¼ÁÐΪ£º

 ¦Î 0 1 3
 P $\frac{7}{24}$ $\frac{21}{40}$ $\frac{7}{40}$ $\frac{1}{120}$
E¦Î=$0¡Á\frac{7}{24}+1¡Á\frac{21}{40}+2¡Á\frac{7}{40}+3¡Á\frac{1}{120}$=$\frac{9}{10}$£®

µãÆÀ ±¾Ì⿼²éƵÂÊ·Ö²¼Ö±·½Í¼¡¢Í³¼ÆÁ¿¡¢Ëæ»ú±äÁ¿µÄ·Ö²¼ÁС¢ÊýѧÆÚÍûµÈ»ù´¡ÖªÊ¶£¬¿¼²éÔËËãÇó½âÄÜÁ¦¡¢Êý¾Ý´¦ÀíÄÜÁ¦¡¢Ó¦ÓÃÒâʶ£¬¿¼²é·ÖÀàÓëÕûºÏ˼Ïë¡¢»òÈ»Óë±ØÈ»Ë¼ÏëµÈ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÒÑÖªf£¨x£©=x3-$\frac{9}{2}$x2+6x+a£¬Èô?x0¡Ê[1£¬4]£¬Ê¹f£¨x0£©=2a³ÉÁ¢£¬ÔòaµÄ·¶Î§ÊÇ[2£¬16]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÉèµÈ²îÊýÁÐ{an}µÄ¹«²îd¡Ù0£¬ÒÑÖªa1=2£¬ÇÒa1£¬a2£¬a4³ÉµÈ±ÈÊýÁÐ
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ
£¨2£©ÉèÊýÁÐbn=$\frac{1}{{{a}_{n}}^{2}-1}$£¬ÇóÊýÁÐ{bn}µÄǰnÏîºÍSn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®º¯Êýf£¨x£©=lg£¨x-1£©+$\frac{1}{\sqrt{2-x}}$µÄ¶¨ÒåÓòΪ£¨1£¬2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®Èçͼ£¬ÔÚÌÝÐÎABCDÖУ¬AB=3CD£¬ÔòÏÂÁÐÅжÏÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®$\overrightarrow{AB}$=3$\overrightarrow{CD}$B£®$\overrightarrow{AC}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\overrightarrow{AD}$C£®$\overrightarrow{BD}$=$\overrightarrow{AB}$-$\overrightarrow{AD}$D£®$\overrightarrow{BC}$=-$\frac{2}{3}$$\overrightarrow{AB}$+$\overrightarrow{AD}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®¼ÆËã-sin133¡ãcos197¡ã-cos47¡ãcos73¡ãµÄ½á¹ûΪ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{\sqrt{3}}{3}$C£®$\frac{\sqrt{2}}{2}$D£®$\frac{\sqrt{3}}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®Ä³¼¸ºÎÌåµÄÈýÊÓͼÈçͼËùʾ£¬ÇҸü¸ºÎÌåµÄÌå»ýÊÇ$\frac{3}{2}$£¬ÔòÕýÊÓͼÖеÄxµÄÖµÊÇ£¨¡¡¡¡£©
A£®2B£®$\frac{9}{2}$C£®$\frac{3}{2}$D£®3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬SnΪÆäǰnÏîºÍ£¬ÇÒ¶ÔÈÎÒâµÄn¡ÊN*£¬¾ùÓÐ2an£¬2Sn£¬$a_n^2$³ÉµÈ²îÊýÁУ®
£¨1£©Çóa1µÄÖµ£»
£¨2£©ÇóÊýÁÐ{an}µÄͨÏʽ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªA£¨2£¬1£©£¬O£¨0£¬0£©£¬µãM£¨x£¬y£©Âú×ã$\left\{\begin{array}{l}1¡Üx¡Ü2\\ y¡Ü2\\ 2x-y¡Ü2\end{array}\right.$£¬ÔòZ=$\overrightarrow{OA}$•$\overrightarrow{AM}$µÄ×î´óֵΪ£¨¡¡¡¡£©
A£®-5B£®-1C£®0D£®1

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸