精英家教网 > 高中数学 > 题目详情

已知双曲线的中心在原点,一个焦点为F1(-,0),点P在双曲线上,且线段PF1的中点坐标为(0,2),则此双曲线的方程是(  )

(A) -y2=1      (B)x2-=1

(C) -=1  (D) -=1


B

解析:由双曲线的焦点可知c=,线段PF1的中点坐标为(0,2),所以设右焦点为F2,则有PF2⊥x轴,且|PF2|=4,点P在双曲线右支上.所以|PF1|===6,所以|PF1|-|PF2|=6-4=2=2a,所以a=1,b2=c2-a2=4,所以双曲线的方程为x2-=1.故选B.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:


已知函数f(x)=2sin(ωx+),x∈R,其中ω>0,-π<≤π.若f(x)的最小正周期为6π,且当x=时,f(x)取得最大值,则(  )

(A)f(x)在区间[-2π,0]上是增函数

(B)f(x)在区间[-3π,-π]上是增函数

(C)f(x)在区间[3π,5π]上是减函数

(D)f(x)在区间[4π,6π]上是减函数

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线-=1的离心率为     . 

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1、F2为双曲线C: -y2=1的左、右焦点,点P在C上,∠F1PF2=60°,则P到x轴的距离为(  )

(A)    (B)   (C)    (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


双曲线的中心在坐标原点O,A、C分别是双曲线虚轴的上、下顶点,B是双曲线的左顶点,F是双曲线的左焦点,直线AB与FC相交于点D,若双曲线的离心率为2,则∠BDF的余弦值是(  )

(A) (B)    (C)    (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


已知F1、F2是椭圆C: +=1(a>b>0)的两个焦点,P为椭圆C上一点,且,若△PF1F2的面积为9,则b=    . 

查看答案和解析>>

科目:高中数学 来源: 题型:


设F1,F2是椭圆E: +=1(a>b>0)的左、右焦点,P为直线x=上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为(  )

(A)   (B)   (C)   (D)

查看答案和解析>>

科目:高中数学 来源: 题型:


椭圆+=1上有两个动点P、Q,E(3,0),EP⊥EQ,则·的最小值为(  )

(A)6    (B)3-    (C)9    (D)12-6

查看答案和解析>>

科目:高中数学 来源: 题型:


已知椭圆E: +=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为.

(1)求椭圆E的方程;

(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足=+,证明·为定值,并求出该值.

查看答案和解析>>

同步练习册答案