已知双曲线的中心在原点,一个焦点为F1(-
,0),点P在双曲线上,且线段PF1的中点坐标为(0,2),则此双曲线的方程是( )
(A)
-y2=1 (B)x2-
=1
(C)
-
=1 (D)
-
=1
科目:高中数学 来源: 题型:
已知函数f(x)=2sin(ωx+),x∈R,其中ω>0,-π<≤π.若f(x)的最小正周期为6π,且当x=
时,f(x)取得最大值,则( )
(A)f(x)在区间[-2π,0]上是增函数
(B)f(x)在区间[-3π,-π]上是增函数
(C)f(x)在区间[3π,5π]上是减函数
(D)f(x)在区间[4π,6π]上是减函数
查看答案和解析>>
科目:高中数学 来源: 题型:
双曲线的中心在坐标原点O,A、C分别是双曲线虚轴的上、下顶点,B是双曲线的左顶点,F是双曲线的左焦点,直线AB与FC相交于点D,若双曲线的离心率为2,则∠BDF的余弦值是( )
(A)
(B)
(C)
(D)![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
设F1,F2是椭圆E:
+
=1(a>b>0)的左、右焦点,P为直线x=
上一点,△F2PF1是底角为30°的等腰三角形,则E的离心率为( )
(A)
(B)
(C)
(D) ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
已知椭圆E:
+
=1(a>b>0),以抛物线y2=8x的焦点为顶点,且离心率为
.
(1)求椭圆E的方程;
(2)若F为椭圆E的左焦点,O为坐标原点,直线l:y=kx+m与椭圆E相交于A、B两点,与直线x=-4相交于Q点,P是椭圆E上一点且满足
=
+
,证明
·
为定值,并求出该值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com