精英家教网 > 高中数学 > 题目详情
6.4名同学分别报名参加数、理、化竞赛,每人限报其中的1科,不同的报名方法种数(  )
A.24B.4C.43D.34

分析 根据题意,分析每一个人的选择参加竞赛的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,4名同学分别报名参加数、理、化竞赛,
每人都有3种选择方法,
则不同的报名方法种数有3×3×3×3=34种;
故选:D.

点评 本题考查分步计数原理的应用,注意没有要求数、理、化三科竞赛都有人参加.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xlnx,(e=2.718…).
(1)设g(x)=f(x)+x2-2(e+1)x+6,
①记g(x)的导函数为g'(x),求g'(e);
②若方程g(x)-a=0有两个不同实根,求实数a的取值范围;
(2)若在[1,e]上存在一点x0使$m({f({x_0})-1})>x_0^2+1$成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的偶函数f(x)满足f(2-x)=f(x),且在[-3,-2]上是减函数,α,β是钝角三角形的两个锐角,则f(sinα)与f(cosβ)的大小关系是(  )
A.f(sinα)>f(cosβ)B.f(sinα)<f(cosβ)C.f(sinα)=f(cosβ)D.f(sinα)≥f(cosβ)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在直角坐标系xOy中,已知圆C1的参数方程为$\left\{{\begin{array}{l}{x=1+cosϕ}\\{y=2+sinϕ}\end{array}}\right.$(ϕ为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,直线C2的极坐标方程为ρcosθ+2=0.
(1)求C1的极坐标方程与C2的直角坐标方程;
(2)若直线C3的极坐标方程为$θ=\frac{π}{4}({ρ∈R})$,设C3与C1的交点为M,N,P为C2上的一点,且△PMN的面积等于1,求P点的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设全集U=R,集合A={3,4,5,6,7},B={x|3<x<7},则A∩(∁UB)=(  )
A.{3,5,7}B.{3,7}C.{4,5,6}D.{5}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若O为△ABC所在平面内任一点,且满足$\overrightarrow{BC}•(\overrightarrow{OB}+\overrightarrow{OC}-2\overrightarrow{OA})=0$,则△ABC的形状为(  )
A.正三角形B.直角三角形C.等腰三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知q>0的等比数列{an},若a3,a7是方程x2-5x+4=0的两个根,则a5=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.等差数列{an}中,首项a1<0,公差d>0,Sn为其前n项和,则点(n,Sn)可能在下列哪条曲线上(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过原点作曲线y=ex的切线,则切点的坐标为(1,e),切线的斜率为e.

查看答案和解析>>

同步练习册答案