精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=$\frac{x}{2x+1}$,数列{an}的前n项和为Sn,若a1=$\frac{1}{2}$,Sn+1=f(Sn)(n∈N*).
(1)求数列{an}的通项公式;
(2)设Tn=S12+S22+…+Sn2,当n≥2时,求证:4Tn<2-$\frac{1}{n}$.

分析 (1)由题意可得:Sn+1=f(Sn)=$\frac{{S}_{n}}{2{S}_{n}+1}$,两边取倒数可得:$\frac{1}{{S}_{n+1}}$=$\frac{1}{{S}_{n}}$+2,即$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=2,利用等差数列的通项公式可得:Sn=$\frac{1}{2n}$.再利用递推关系可得:an
(2)${S}_{n}^{2}$=$\frac{1}{4{n}^{2}}$,n≥2时,${S}_{n}^{2}$≤$\frac{1}{4n(n-1)}$=$\frac{1}{4}$$(\frac{1}{n-1}-\frac{1}{n})$.利用“裂项求和”方法即可得出.

解答 (1)解:由题意可得:Sn+1=f(Sn)=$\frac{{S}_{n}}{2{S}_{n}+1}$,
两边取倒数可得:$\frac{1}{{S}_{n+1}}$=$\frac{1}{{S}_{n}}$+2,即$\frac{1}{{S}_{n+1}}$-$\frac{1}{{S}_{n}}$=2,
∴数列$\{\frac{1}{{S}_{n}}\}$是等差数列,首项为2,公差为2.
∴$\frac{1}{{S}_{n}}$=2+2(n-1)=2n,解得Sn=$\frac{1}{2n}$.
∴n≥2时,an=Sn-Sn-1=$\frac{1}{2n}$-$\frac{1}{2(n-1)}$=-$\frac{1}{2n(n-1)}$.
∴an=$\left\{\begin{array}{l}{\frac{1}{2},n=1}\\{\frac{-1}{2n(n-1)},n≥2}\end{array}\right.$.
(2)证明:${S}_{n}^{2}$=$\frac{1}{4{n}^{2}}$,n≥2时,${S}_{n}^{2}$≤$\frac{1}{4n(n-1)}$=$\frac{1}{4}$$(\frac{1}{n-1}-\frac{1}{n})$.
∴Tn<$\frac{1}{4}$+$\frac{1}{4}[(1-\frac{1}{2})+(\frac{1}{2}-\frac{1}{3})$+…+$(\frac{1}{n-1}-\frac{1}{n})]$=$\frac{1}{4}$+$\frac{1}{4}(1-\frac{1}{n})$=$\frac{1}{2}-\frac{1}{4n}$,
即4Tn<2-$\frac{1}{n}$.

点评 本题考查了数列递推关系、等差数列的通项公式、“裂项求和”方法,考查了分类讨论方法、推理能力与计算能力,属于中档题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.设椭圆E的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),点O为坐标原点,点A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上.满足|BM|=2|AM|,直线0M的斜率为$\frac{\sqrt{5}}{10}$.
(1)求椭圆的离心率;
(2)设点C的坐标为(-a,0),N为线段BC的中点,点N关于直线AB的对称点的纵坐标为$\frac{13}{2}$,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在锐角△ABC中,B=60°,|${\overrightarrow{AB}$-$\overrightarrow{AC}}$|=2,则$\overrightarrow{AB}$•$\overrightarrow{AC}$的取值范围为(  )
A.(0,12)B.[${-\frac{1}{4}$,12)C.(0,4]D.(0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在△ABC中,内角A,B,C对应的三边长分别是a,b,c,且满足c(bcosA-$\frac{a}{2}$)=b2-a2
(I)求角B的大小:
(Ⅱ)若BD为AC边上的中线,cosA=$\frac{1}{7}$,BD=$\frac{\sqrt{129}}{2}$,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义在R上的函数f(x)满足:f(x)+f′(x)<1,f(0)=-1,则不等式exf(x)>ex-2(其中e为自然对数的底数)的解集为(  )
A.(-∞,0)B.(-∞,2)C.(0,+∞)D.(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)在左顶点与抛物线y2=2px(p>0)的焦点的距离为5,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-3,-6),则双曲线的焦距为(  )
A.2$\sqrt{3}$B.2$\sqrt{5}$C.4$\sqrt{3}$D.4$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知点P是双曲线$\frac{{x}^{2}}{4}$-y2=1上任意一点,A、B分别是双曲线的左右顶点,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的最小值为(  )
A.-3B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.求满足下列条件的圆的标准方程,过A(4,0)、B(0,3)、C(0,0)三点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求函数y=($\frac{1}{2}$)${\;}^{\sqrt{{x}^{2}-2x}}$的单调区间和值域.

查看答案和解析>>

同步练习册答案