精英家教网 > 高中数学 > 题目详情
18.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱最大体积为(  )
A.$\frac{π}{27}$B.$\frac{8π}{27}$C.$\frac{π}{3}$D.$\frac{2π}{9}$

分析 根据条件求出圆柱的体积,利用基本不等式研究函数的最值即可.

解答 解:设圆柱的半径为r,高为x,体积为V,
则由题意可得$\frac{r}{1}=\frac{2-x}{2}$,
∴x=2-2r,
∴圆柱的体积为V(r)=πr2(2-2r)(0<r<1),
则V(r)≤π$(\frac{r+r+2-2r}{3})^{3}$=$\frac{8}{27}π$
∴圆柱的最大体积为$\frac{8}{27}π$,此时r=$\frac{2}{3}$,
故选:B.

点评 本题主要考查基本不等式在生活中的优化问题,利用条件建立体积函数是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.随着国家二孩政策的全面放开,为了调查一线城市和非一线城市的二孩生育意愿,某机构用简单随机抽样方法从不同地区调查了100位育龄妇女,结果如表.
  非一线 一线 总计
 愿生 45 20 65
 不愿生 13 22 35
 总计 58 42 100
附表:
 P(K2≥k) 0.050 0.010 0.001
 k 3.841 6.635 10.828
由K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$算得,K2=$\frac{100×(45×22-20×13)^{2}}{58×42×35×65}$≈9.616参照附表,得到的正确结论是(  )
A.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别有关”
B.在犯错误的概率不超过0.1%的前提下,认为“生育意愿与城市级别无关”
C.有99%以上的把握认为“生育意愿与城市级别有关”
D.有99%以上的把握认为“生育意愿与城市级别无关”

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.四个变量y1、y2、y3、y4随变量x变化的函数值如表:
x051015202530
y1 5 130 505 1130 20053130 4505 
y2 5 94.4781785.2 33733 6.37×105 1.2×107 2.28×108 
y3 5 30 55 80 105 130 155
y4 5 2.3107 1.4295 1.1407 1.0461 1.0151 1.005
关于x呈单调增加的指数型函数和线性函数变化的变量分别是(  )
A.y2、y1B.y2、y3C.y4、y3D.y1、y3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知直角梯形ABCD中,AB∥CD,AB⊥AD,AB=4,CD=6,AD=5,点E在梯形内,那么∠AEB为钝角的概率为(  )
A.$\frac{2π}{25}$B.$\frac{4π}{25}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=|x+a|-2a,其中a∈R.
(1)当a=-2时,求不等式f(x)≤2x+1的解集;
(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ax+lnx.
(Ⅰ)若f(x)在区间(0,1)上单调递增,求实数a的取值范围;
(Ⅱ)设函数h(x)=-$\frac{1}{2}$x2-f(x)有两个极值点x1、x2,且x1∈[$\frac{1}{2}$,1),求证:|h(x1)-h(x2)|<2-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=x(m+e-x)(其中e为自然对数的底数),曲线y=f(x)上存在不同的两点,使得曲线在这两点处的切线都与y轴垂直,则实数m的取值范围是(0,e-2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知A(6,3),B(2,3),C(4,1)和D(5,m)四点在同一圆周上,求
(1)圆的方程;
(2)m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知圆C:(x-3)2+(y-4)2=4,直线l过定点A(1,0).
(1)若l与圆C相切,求l的方程;
(2)若l与圆C相交于P,Q两点,求△CPQ的面积的最大值,并求此时直线l的方程.(其中点C是圆的圆心)

查看答案和解析>>

同步练习册答案