精英家教网 > 高中数学 > 题目详情
9.四个变量y1、y2、y3、y4随变量x变化的函数值如表:
x051015202530
y1 5 130 505 1130 20053130 4505 
y2 5 94.4781785.2 33733 6.37×105 1.2×107 2.28×108 
y3 5 30 55 80 105 130 155
y4 5 2.3107 1.4295 1.1407 1.0461 1.0151 1.005
关于x呈单调增加的指数型函数和线性函数变化的变量分别是(  )
A.y2、y1B.y2、y3C.y4、y3D.y1、y3

分析 观察题中表格,可以看出,三个变量y1、y2、y3都是越来越大,但是增长速度不同,其中变量y2的增长速度最快,变量y3呈直线变换,一次函数类型,y1类似于指数函数类型,y2指数函数变化.y4是减函数.

解答 解:从题表格可以看出,三个变量y1、y2、y3都是越来越大,但是增长速度不同,
其中变量y2的增长速度最快,变量y3呈直线变换,一次函数类型,y1也类似于指数函数类型,
y2指数函数变化.y2=5×1.8x
y4是减函数.图象如图,x>15以后变换不大,呈现直线类型,所以不是指数函数类型.
故选:A.

点评 本题考查对数函数、指数函数与幂函数的增长差异.解题时要认真审题,注意指数函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=ax-$\frac{a}{x}$-lnx(a≠0).
(1)若x=2是函数f(x)的极值点,求a的值;
(2)讨论函数f(x)的单调区间;
(3)对任意的正整数n,证明:$\frac{3}{1×2}$+$\frac{5}{2×3}$+$\frac{7}{3×5}$+…+$\frac{2n+1}{n(n+1)}$>ln(n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.在数列{an}中,a1=2,an+1=3an,(n∈N*),则a4=54.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知ξ~N(μ,δ2),若P(ξ>4)=P(ξ<2)成立,且P(ξ≤0)=0.2,则P(0<ξ<6)=0.6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.公元前3世纪,古希腊欧几里得在《几何原本》里提出:“球的体积(V)与它的直径(d)的立方成正比”,此即V=kd3,与此类似,我们可以得到:
(1)正四面体(所有棱长都相等的四面体)的体积(V)与它的棱长(a)的立方成正比,即V=ma3
(2)正方体的体积(V)与它的棱长(a)的立方成正比,即V=na3
(3)正八面体(所有棱长都相等的八面体)的体积(V)与它的棱长(a)的立方成正比,即V=ta3
那么m:n:t=(  )
A.1:6$\sqrt{2}$:4B.$\sqrt{2}$:12:16C.$\frac{\sqrt{2}}{12}$:1:$\sqrt{2}$D.$\sqrt{2}$:6:4$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设平面向量$\overrightarrow{a}$、$\overrightarrow{b}$满足|$\overrightarrow{a}$|、|$\overrightarrow{b}$|、|$\overrightarrow{a}$-$\overrightarrow{b}$|∈[2,6],则$\overrightarrow{a}$•$\overrightarrow{b}$的取值范围为[-14,34].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.当函数f(x)=$\sqrt{3}$sinx+cosx-t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为(  )
A.$\frac{10π}{3}$B.$\frac{8π}{3}$C.$\frac{7π}{3}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.将一个底面半径为1,高为2的圆锥形工件切割成一个圆柱体,能切割出的圆柱最大体积为(  )
A.$\frac{π}{27}$B.$\frac{8π}{27}$C.$\frac{π}{3}$D.$\frac{2π}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知等差数列{bn}和各项都是正数的数列{an},且a1=b1=1,b2+b4=10,满足an2-2anan+1+an-2an+1=0
(1)求{an}和{bn}通项公式;
(2)设cn=$\frac{1}{a_n}+{b_n}$,求数列{cn}的前n项和.

查看答案和解析>>

同步练习册答案