精英家教网 > 高中数学 > 题目详情
5.已知f(x)=2x-2-x,a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$,c=log2$\frac{7}{9}$,则f(a),f(b),f(c)的大小顺序为(  )
A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

分析 判断出函数f(x)的单调性,求出a,b,c的大小,从而判断出函数值的大小即可.

解答 解:f(x)=2x-2-x在R递增,
而a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$>1,0<b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$<1,c=log2$\frac{7}{9}$<0,
故a>b>c,
则f(a)>f(b)>f(c),
故选:C.

点评 本题考查了函数的单调性问题,考查函数值的大小比较,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.命题“若$\frac{{{a_n}+{a_{n+2}}}}{2}<{a_{n+1}}\;(n∈{{N}^*})$,则数列{an}为递减数列”的逆否命题是若数列数列{an}不为递减数列,则$\frac{{a}_{n}+{a}_{n+2}}{2}$≥an+1,n∈N*.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知(x+1)12=a1+a2x+a3x2+…+a13x13.若数列a1,a2,a3,…,ak(1≤k≤13,k∈Z)是一个单调递增数列,则k的最大值是(  )
A.6B.7C.8D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知甲、乙两组数据如茎叶图所示,若它们的中位数相同,平均数也相同.
(1)求m,n的值;
(2)通过定量计算,试比较甲、乙两组数据的分散程度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设甲袋装有m个白球,n个黑球,乙袋装有m个黑球,n个白球,从甲、乙袋中各摸一球,设事件A:“两球同色”,事件B:“两球异色”,试比较P(A)与P(B)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在等比数列中,已知 a1=6,a2=12,求数列an的通项公式及前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=lnx,g(x)=(2m+3)x+n,若对任意的x∈(0,+∞),总有f(x)≤g(x)恒成立,记(2m+3)n的最小值为f(m,n),则f(m,n)最大值为(  )
A.1B.$\frac{1}{e}$C.$\frac{1}{e^2}$D.$\frac{1}{{\sqrt{e}}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知在△ABC中,内角A,B,C所对的边分别是a,b,c,若sin(B-A)+sin(B+A)=3sin2A,且c=$\sqrt{7}$,C=$\frac{π}{3}$,则△ABC的面积是(  )
A.$\frac{3\sqrt{3}}{4}$B.$\frac{7\sqrt{3}}{6}$C.$\frac{\sqrt{21}}{3}$D.$\frac{3\sqrt{3}}{4}$或$\frac{7\sqrt{3}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=$\left\{\begin{array}{l}{\sqrt{x}+3,x≥0}\\{ax+b,x<0}\end{array}\right.$,满足条件:对于任意的非零实数x1,存在唯一的非零实数x2(x2≠x1),使得f(x1)=f(x2).当$f({\sqrt{3}a})=f({4b})$成立时,则实数a+b=(  )
A.$-\sqrt{2}+3$B.5C.$\sqrt{2}+3$D.1

查看答案和解析>>

同步练习册答案