精英家教网 > 高中数学 > 题目详情
10.在等比数列中,已知 a1=6,a2=12,求数列an的通项公式及前n项和Sn

分析 先求出公比,再分别求出数列an的通项公式及前n项和Sn

解答 解:在等比数列中,a1=6,a2=12,
∴q=$\frac{{a}_{2}}{{a}_{1}}$=2,
∴an=6×2n-1=3×2n,Sn=$\frac{6(1-{2}^{n})}{1-2}$=3×2n+1-6.

点评 本题考查了等比数列的通项公式和求和公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.过椭圆$\frac{x^2}{9}+\frac{y^2}{3}=1$上一点$M(\sqrt{3}$,$\sqrt{2})$作直线MA、MB交椭圆于A、B两点,若MA与MB的斜率互为相反数,则直线AB的斜率为$\frac{\sqrt{6}}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.一袋中装有5个白球,3个红球,现从袋中往外取球,每次任取一个,取出后记下颜色,若为红色停止,若为白色则继续抽取,停止时袋中抽取的白球的个数为随机变量ξ,则$P(ξ≤\sqrt{6})$=(  )
A.$\frac{9}{14}$B.$\frac{25}{56}$C.$\frac{37}{56}$D.$\frac{23}{28}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.给出以下四个命题:
(1)在△ABC中,“A<B”是“sinA<sinB”的必要而非充分条件;
(2)函数f(x)=|sinx-cosx|的最小正周期是π;
(3)在△ABC中,若$AB=2\sqrt{2}$,$AC=2\sqrt{3}$,$B=\frac{π}{3}$,则△ABC为钝角三角形;
(4)在同一坐标系中,函数y=sinx与函数$y=\frac{x}{2}$的图象有三个交点
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=2x-2-x,a=($\frac{7}{9}$)${\;}^{-\frac{1}{4}}$,b=($\frac{9}{7}$)${\;}^{\frac{1}{5}}$,c=log2$\frac{7}{9}$,则f(a),f(b),f(c)的大小顺序为(  )
A.f(b)<f(a)<f(c)B.f(c)<f(b)<f(a)C.f(c)<f(a)<f(b)D.f(b)<f(c)<f(a)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.求过点(1,2)且与曲线$y=\sqrt{x}$相切的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.复数z=1+3i的模等于(  )
A.2B.4C.$\sqrt{10}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=3x2+1,g(x)=x3-9x.若函数f(x)+g(x)在区间[k,3]上的最大值为28,则k的取值范围为(-∞,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x) 满足f(2x)=x+1.
(1)求函数f(x) 的解析式;
(2)求函数y=[f(x)]2+f(2x) 的最小值;
(3)设函数g(x) 是函数y=f(x)-1 的反函数,函数h(x)=f(x)+g(x).若方程h(x)-a=0 在区间(1,2)上有根,求实数a 的取值范围.

查看答案和解析>>

同步练习册答案