分析 (Ⅰ)求出f(x)的导数和切线的斜率和方程,设l与曲线y=g(x)相切于点(m,n),求出g(x)的导数,由切线的斜率可得方程,求得a的值;
(Ⅱ)记F(x)=f(x)-g(x)=x3-9x-3x2-a,求得导数和单调区间,极值,由题意可得方程f(x)=g(x)有三个不同实数解的等价条件为极小值小于0,极大值大于0,解不等式即可得到所求范围.
解答 解:(Ⅰ)函数f(x)=x3-9x的导数为f′(x)=3x2-9,
f(0)=0,f′(0)=-9,直线l的方程为y=-9x,
设l与曲线y=g(x)相切于点(m,n),
g′(x)=6x,g′(m)=6m=-9,解得m=-$\frac{3}{2}$,
g(m)=-9m,即g(-$\frac{3}{2}$)=$\frac{27}{4}$+a=$\frac{27}{2}$,
解得a=$\frac{27}{4}$;
(Ⅱ)记F(x)=f(x)-g(x)=x3-9x-3x2-a,
F′(x)=3x2-6x-9,
由F′(x)=0,可得x=3或x=-1.
当x<-1时,F′(x)>0,F(x)递增;
当-1<x<3时,F′(x)<0,F(x)递减;
当x>3时,F′(x)>0,F(x)递增.
可得x=-1时,F(x)取得极大值,且为5-a,
x=3时,F(x)取得极小值,且为-27-a,
因为当x→+∞,F(x)→+∞;x→-∞,F(x)→-∞.
则方程f(x)=g(x)有三个不同实数解的等价条件为:
5-a>0,-27-a<0,
解得-27<a<5.
点评 本题考查导数的运用:求切线方程和单调区间、极值,考查方程的解的情况,注意运用转化思想,考查运算化简能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $[{\frac{1}{4},\frac{3}{4}}]$ | B. | $[{0,\frac{3}{4}}]$ | C. | $[{\frac{1}{4},\frac{1}{2}}]$ | D. | $[{\frac{1}{4},\frac{1}{3}}]$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com