精英家教网 > 高中数学 > 题目详情

定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;
是偶函数;
处的切线与直线垂直.
(I)求函数的解析式;
(II)设,若存在,使,求实数的取值范围.

(I);(II)

解析试题分析:(I),由①得:;由②得:;由③得:
解得:;故
(II)由(I)知:;由得:存在,使得有解
;令,即
,得上单调递增,在上单调递减;
;故;所以
考点:导数的几何意义,利用导数研究函数的性质。
点评:典型题,在给定区间,导数非负,函数为增函数,导数非正,函数为减函数。涉及“不等式恒成立”问题,往往通过构造函数,转化成求函数的最值问题,利用导数加以解决。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中的导函数.
(1)对满足的一切的值,都有,求实数的取值范围;
(2)设,当实数在什么范围内变化时,函数的图象与直线只有一个公共点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若曲线y=f(x)在(1,f(1))处的切线与直线x+y+1=0平行,求a的值;
(Ⅱ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅲ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点与极值;
(2)设的导函数,若对于任意,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数 
(Ⅰ)若a>0,函数y=f(x)在区间(a,a 2-3)上存在极值,求a的取值范围;
(Ⅱ)若a>2,求证:函数y=f(x)在(0,2)上恰有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数f(x)=ln x.
(1)若a>0,试判断f(x)在定义域内的单调性;
(2)若f(x)在[1,e]上的最小值为,求a的值;
(3)若f(x)<x2在(1,+∞)上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求函数的单调区间;
(2)任意恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)=(x∈R)在区间[-1,1]上是增函数.
(1)求实数a的值组成的集合A;
(2)设关于x的方程f(x)=的两个非零实根为x1、x2.试问:是否存在实数m,使得不等式m2+tm+1≥|x1-x2|对任意a∈A及t∈[-1,1]恒成立?若存在,求m的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案