精英家教网 > 高中数学 > 题目详情

已知函数
(1)求函数的极值点与极值;
(2)设的导函数,若对于任意,且恒成立,求实数的取值范围.

(1)极小值点为,无极大值点;极小值为,无极大值. (2)

解析试题分析:(1),若,则










递增

递减
极小值点为,无极大值点;极小值为,无极大值. 6分
(2)
对于任意,且恒成立,
对于任意,且恒成立,
上单调递增,
对于任意,且恒成立,
恒成立,                9分
上单调递增,
上恒成立,                11分
法1.上恒成立,即

上递减,上递增,
.                   15分
法2.令
①当时,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数,当时,有极大值
(1)求的值;
(2)求函数的极小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数(e为自然对数的底数).
(1)求函数的单调增区间;
(2)设关于x的不等式的解集为M,且集合,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在(1,2)上是增函数,在(0,1)上是减函数。
的值;
时,若内恒成立,求实数的取值范围;
求证:方程内有唯一解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求的单调区间;
(2)当时,判断的大小,并说明理由;
(3)求证:当时,关于的方程:在区间上总有两个不同的解.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

定义在上的函数同时满足以下条件:
上是减函数,在上是增函数;
是偶函数;
处的切线与直线垂直.
(I)求函数的解析式;
(II)设,若存在,使,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)当时,求曲线在点处的切线方程;
(2)对任意在区间上是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

解下列导数问题:
(1)已知,求
(2)已知,求

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知的图象经过点,且在处的切线方程是.
(I)求的解析式;
(Ⅱ)求的单调递增区间.

查看答案和解析>>

同步练习册答案