精英家教网 > 高中数学 > 题目详情

已知函数,当时,有极大值
(1)求的值;
(2)求函数的极小值。

(1)
(2)0

解析试题分析:解:(1)时,,
   6分
(2),令,得
          12分
考点:导数的运用
点评:主要是考查了导数的计算以及根据导数的符号来判定函数单调性,进而得到极值,属于基础题。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(Ⅰ)若,求函数的极值;
(Ⅱ)设函数,求函数的单调区间;
(Ⅲ)若在区间)上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)若,试求函数的单调区间;
(2)过坐标原点作曲线的切线,证明:切点的横坐标为1;
(3)令,若函数在区间(0,1]上是减函数,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数
(1)若,证明
(2)若不等式都恒成立,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数在点处取得极小值-4,使其导数的取值范围为,求:
(1)的解析式;
(2),求的最大值;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求曲线在点处的切线方程;
(2)直线为曲线的切线,且经过原点,求直线的方程及切点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的导数为实数,.
(Ⅰ)若在区间[-1,1]上的最小值、最大值分别为-2、1,求a、b的值;
(Ⅱ)在(Ⅰ)的条件下,求经过点且与曲线相切的直线的方程;
(Ⅲ)设函数,试判断函数的极值点个数。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知.
(Ⅰ)时,求证内是减函数;
(Ⅱ)若内有且只有一个极值点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的极值点与极值;
(2)设的导函数,若对于任意,且恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案