精英家教网 > 高中数学 > 题目详情
17.若f(x)=sin$\frac{π}{3}$x,则f(1)+f(2)+f(3)+…+f(2016)=0.

分析 易知f(x)=sin$\frac{π}{3}$x的周期为6,从而化简求得.

解答 解:∵f(x)=sin$\frac{π}{3}$x的周期为6,
且f(1)+f(2)+f(3)+f(4)+f(5)+f(6)
=sin$\frac{π}{3}$+sin$\frac{2π}{3}$+sinπ+sin$\frac{4π}{3}$+sin$\frac{5π}{3}$+sin2π=0,
又∵2016÷6=336,
∴f(1)+f(2)+f(3)+…+f(2016)=0,
故答案为:0.

点评 本题考查了函数的周期性的判断与应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知矩阵M=$[\begin{array}{l}{1}&{0}\\{0}&{2}\end{array}]$,N=$[\begin{array}{l}{\frac{1}{2}}&{0}\\{0}&{1}\end{array}]$,试求曲线y=sinx在矩阵(MN)-1变换下的函数解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知角α在第三象限,且sinα=-$\frac{12}{13}$,则tanα=(  )
A.$-\frac{12}{5}$B.$\frac{12}{5}$C.$\frac{5}{12}$D.$-\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在△ABC中,a、b、c分别为角A、B、C的对边,且$\frac{2a-c}{c}$=$\frac{tanB}{tanC}$.
(1)求角B的大小;
(2)若$\sqrt{(1-cos2A)(1-cos2C)}$=$\frac{\sqrt{3}+1}{2}$,求cos(A-C)值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=$\left\{\begin{array}{l}{x^2}+2x,x≥0\\{x^2}-2x,x<0\end{array}$,若f(-a)+f(a)≤2f(3),则实数a的取值范围是[-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.求值:cos(-$\frac{11}{4}$π)=-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知复数z=$\frac{(3+4i)^{2}}{5i}$(i为虚数单位),则|z|的值是5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“直线l垂直于平面α内的无数条直线”是“l⊥α”的一个(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知曲线C是与两个定点O(0,0),A(0,3)距离的比为$\frac{1}{2}$的点的轨迹.
(I)求曲线C的方程.
(Ⅱ)直线l斜率存在且在y轴的截距为-4,若1与曲线C至少有一个公共点,求直线1的斜率取值范围.

查看答案和解析>>

同步练习册答案