【题目】设函数在内有极值.
(1)求实数a的取值范围;
(2)若x1∈(0,1),x2∈(1,+∞).求证:f(x2)-f(x1)>e+2-.注:e是自然对数的底数.
【答案】(1);(2)见解析.
【解析】分析:(1)函数的定义域为,求导数,利用函数在内有极值,可得在内有解,令,根据,可设,则,从而可求实数的取值范围.
(2)求导函数确定函数的单调性,进而由,可得,由,可得,所以,又,即,可得在上单调递增,从问题得证.
详解:(1)易知函数f(x)的定义域为(0,1)∪(1,+∞),
f′(x)=-==.
由函数f(x)在内有极值,可知方程f′(x)=0在内有解,令g(x)=x2-(a+2)x+1=(x-α)(x-β).
不妨设0<α<,则β>e,又g(0)=1>0,
所以g=-+1<0,解得a>e+-2.
(2)证明 由(1)知f′(x)>00<x<α或x>β,
f′(x)<0α<x<1或1<x<β,
所以函数f(x)在(0,α),(β,+∞)上单调递增,在(α,1),(1,β)上单调递减.
由x1∈(0,1)得f(x1)≤f(α)=ln α+,
由x2∈(1,+∞)得f(x2)≥f(β)=ln β+,
所以f(x2)-f(x1)≥f(β)-f(α).
由(1)易知α·β=1,α+β=a+2,
所以f(β)-f(α)=ln β-ln+a=2ln β+a·=2ln β+a·=2lnβ+β-.
记h(β)=2ln β+β- (β>e),
则h′(β)=+1+=2>0,
所以函数h(β)在(e,+∞)上单调递增,
所以f(x2)-f(x1)≥h(β)>h(e)
科目:高中数学 来源: 题型:
【题目】将函数f(x)=sinx的图象向右平移个单位,横坐标缩小至原来的倍(纵坐标不变)得到函数y=g(x)的图象.
(1)求函数g(x)的解析式;
(2)若关于x的方程2g(x)-m=0在x∈[0,]时有两个不同解,求m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设集合P={x|x2﹣x﹣6<0},Q={2a≤x≤a+3}.
(1)若P∪Q=P,求实数a的取值范围;
(2)若P∩Q=,求实数a的取值范围;
(3)若P∩Q={x|0≤x<3},求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】[2019·清远期末]一只红铃虫的产卵数和温度有关,现收集了4组观测数据列于下表中,根据数据作出散点图如下:
温度 | 20 | 25 | 30 | 35 |
产卵数/个 | 5 | 20 | 100 | 325 |
(1)根据散点图判断与哪一个更适宜作为产卵数关于温度的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程(数字保留2位小数);
(3)要使得产卵数不超过50,则温度控制在多少以下?(最后结果保留到整数)
参考数据:,,,,,,,,,,
5 | 20 | 100 | 325 | |
1.61 | 3 | 4.61 | 5.78 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x+a|+|x﹣2|
(1)当a=﹣3时,求不等式f(x)≥3的解集;
(2)若f(x)≤|x﹣4|的解集包含[1,2],求a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=4cosxsin(x+)-1.
(1)求f(x)的最小正周期和单调递减区间;
(2)将y=f(x)图象上所有的点向右平行移动个单位长度,得到y=g(x)的图象.若g(x)在(0,m)内是单调函数,求实数m的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com