精英家教网 > 高中数学 > 题目详情
14.关于x方程$|{\begin{array}{l}{sinx}&1\\ 1&{4cosx}\end{array}}|$=0的解为x=$\frac{π}{12}+kπ$或x=$\frac{5π}{12}+kπ$,k∈Z.

分析 由已知可得sin2x=$\frac{1}{2}$.求出2x的值,则原方程的解可求.

解答 解:由$|{\begin{array}{l}{sinx}&1\\ 1&{4cosx}\end{array}}|$=0,得4sinxcosx-1=0,
即sin2x=$\frac{1}{2}$.
∴2x=$\frac{π}{6}+2kπ$或x=$\frac{5π}{6}+2kπ$,
则x=$\frac{π}{12}+kπ$或x=$\frac{5π}{12}+kπ$,k∈Z.
故答案为:x=$\frac{π}{12}+kπ$或x=$\frac{5π}{12}+kπ$,k∈Z.

点评 本题考查二阶矩阵的应用,考查了三角函数值的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=msin(ωx)cos(ωx)+nsin2(ωx)(ω>0)关于点($\frac{π}{12}$,1)对称.
(Ⅰ)若m=4,求f(x)的最小值;
(Ⅱ)若函数f(x)的最小正周期是一个三角形的最大内角的值,又f(x)≤f($\frac{π}{4}$)对任意实数x成立,求函数f(x)的解析式,并写出函数f(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.圆锥是由直角三角形绕其一条边所在直线旋转得到的几何体
B.圆台的侧面展开图是一个扇环
C.棱柱的侧棱可以不平行
D.棱台的各侧棱延长后不一定交于一点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列四个命题,其中正确的命题是(  )
①若cos(A-B)cos(B-C)cos(C-A)=1,则△ABC是等边三角形;
②若sinA=cosB,则△ABC是直角三角形;
③若cosAcosBcosC<0,则△ABC是钝角三角形;
④若sin2A=sin2B,则△ABC是等腰三角形.
A.①②B.③④C.①③D.②④

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.下列命题中正确的是(  )
A.若xn>0,$\underset{lim}{n→∞}$xn=M,则M>0
B.若$\underset{lim}{n→∞}$(xn-yn)=0,则$\underset{lim}{n→∞}$xn=$\underset{lim}{n→∞}$yn
C.若$\underset{lim}{n→∞}$${x}_{n}^{2}$=N2,则$\underset{lim}{n→∞}$xn=N
D.若$\underset{lim}{n→∞}$xn=p,则$\underset{lim}{n→∞}$${x}_{n}^{2}$=p2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在一次智力竞赛中,每位参赛者要从5道题中不放回地依次抽取2道题作答,已知5道题中包含自然科学题3道,人文科学题2道.则参赛者甲连续两次都抽到自然科学题的概率是(  )
A.$\frac{3}{10}$B.$\frac{1}{2}$C.$\frac{3}{5}$D.$\frac{2}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.数列$\frac{2}{3}$、-$\frac{3}{9}$、$\frac{4}{27}$、-$\frac{5}{81}$,…的一个通项公式是(  )
A.(-1)n$\frac{n+1}{3^n}$B.(-1)n+1$\frac{n+1}{3^n}$C.(-1)n$\frac{n}{3^n}$D.(-1)n+1$\frac{n}{{3}^{n}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在△ABC中,内角A,B,C的对边满足a<b<c,a2-c2=b2-$\frac{8ac}{5}$,a=3,△ABC的面积为6.
(1)求角A的正弦值;
(2)求边b,c;
(2)设D为△ABC内任一点,点D到边BC、AC的距离分别为x,y,求|2x-y|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.关于x的不等式$\frac{2{x}^{2}-x+k}{{x}^{2}-x+3}$>1对一切实数x恒成立,则k的取值范围是(3,+∞).

查看答案和解析>>

同步练习册答案