分析 由已知可得sin2x=$\frac{1}{2}$.求出2x的值,则原方程的解可求.
解答 解:由$|{\begin{array}{l}{sinx}&1\\ 1&{4cosx}\end{array}}|$=0,得4sinxcosx-1=0,
即sin2x=$\frac{1}{2}$.
∴2x=$\frac{π}{6}+2kπ$或x=$\frac{5π}{6}+2kπ$,
则x=$\frac{π}{12}+kπ$或x=$\frac{5π}{12}+kπ$,k∈Z.
故答案为:x=$\frac{π}{12}+kπ$或x=$\frac{5π}{12}+kπ$,k∈Z.
点评 本题考查二阶矩阵的应用,考查了三角函数值的求法,是基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 圆锥是由直角三角形绕其一条边所在直线旋转得到的几何体 | |
| B. | 圆台的侧面展开图是一个扇环 | |
| C. | 棱柱的侧棱可以不平行 | |
| D. | 棱台的各侧棱延长后不一定交于一点 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ③④ | C. | ①③ | D. | ②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若xn>0,$\underset{lim}{n→∞}$xn=M,则M>0 | |
| B. | 若$\underset{lim}{n→∞}$(xn-yn)=0,则$\underset{lim}{n→∞}$xn=$\underset{lim}{n→∞}$yn | |
| C. | 若$\underset{lim}{n→∞}$${x}_{n}^{2}$=N2,则$\underset{lim}{n→∞}$xn=N | |
| D. | 若$\underset{lim}{n→∞}$xn=p,则$\underset{lim}{n→∞}$${x}_{n}^{2}$=p2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{10}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{5}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1)n$\frac{n+1}{3^n}$ | B. | (-1)n+1$\frac{n+1}{3^n}$ | C. | (-1)n$\frac{n}{3^n}$ | D. | (-1)n+1$\frac{n}{{3}^{n}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com