精英家教网 > 高中数学 > 题目详情
13.不等式(m+1)x2-mx+m-1<0的解集为∅,则m的取值范围(  )
A.m<-1B.m≥$\frac{2\sqrt{3}}{3}$C.m≤-$\frac{2\sqrt{3}}{3}$D.m≥$\frac{2\sqrt{3}}{3}$或m≤-$\frac{2\sqrt{3}}{3}$

分析 关于x的不等式(m+1)x2-mx+m-1<0的解集为∅,可转化成不等式(m+1)x2-mx+m-1≥0恒成立,然后讨论二次项系数和判别式可得结论.

解答 解:∵关于x的不等式(m+1)x2-mx+m-1<0的解集为∅,
∴不等式(m+1)x2-mx+m-1≥0恒成立,
①当m+1=0,即m=-1时,不等式化为x-2≥0,解得x≥2,不是对任意x∈R恒成立;
②当m+1≠0时,即m≠-1时,?x∈R,使(m+1)x2-mx+m-1≥0,
即m+1>0且△=(-m)2-4(m+1)(m-1)≤0,
化简得:3m2≥4,解得m≥$\frac{2\sqrt{3}}{3}$或m≤-$\frac{2\sqrt{3}}{3}$,
∴应取m≥$\frac{2\sqrt{3}}{3}$;
综上,实数m的取值范围是m≥$\frac{2\sqrt{3}}{3}$.
故选:B.

点评 本题主要考查了二次函数恒成立问题,即根据二次函数图象开口方向和判别式的符号,列出等价条件求出对应的参数的范围,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知函数$f(x)=\frac{lnx+k}{e^x}$(其中k∈R,e是自然对数的底数),f'(x)为f(x)导函数.
(Ⅰ)当k=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)对任意x>1,xexf'(x)+(2k-1)x<1+k恒成立,求整数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知数据x1,x2,…,xn的方差为2,若数据ax1+b,ax2+b,…,axn+b的方差为6,则a的值为±$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设变量x,y满足$\left\{\begin{array}{l}{2x+y-6≥0}\\{x+2y-6≥0}\\{y≥0}\end{array}\right.$,则目标函数z=2x+3y的最小值为(  )
A.6B.10C.12D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知经过两点(5,m)和(m,8)的直线的斜率大于1,则m的取值范围是(  )
A.(5,8)B.(8,+∞)C.($\frac{13}{2}$,8)D.(5,$\frac{13}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=a+$\sqrt{3}$i(a∈R)在复平面内对应的点位于第二象限,且|z|=2,则复数z等于(  )
A.-1+$\sqrt{3}$iB.1+$\sqrt{3}$iC.-1+$\sqrt{3}$i或1+$\sqrt{3}$iD.-2+$\sqrt{3}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知数列{an}的前n和为Sn,a1=1,当n≥2时,an+2Sn-1=n,则S2017=(  )
A.1006B.1007C.1008D.1009

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3+ax与g(x)=bx2+cx图象都过点P(2,0)且在点P处有公切线,求
(1)f(x)和g(x)的表达式及公切线方程;
(2)若$F(x)=f'(1)lnx+\frac{g(x)}{16}$,求F(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.探究函数$f(x)=2x+\frac{8}{x},x∈(0,+∞)$的最小值,并确定取得最小值时x的值.列表如下:
x0.511.51.71.922.12.22.33457
y16108.348.18.0188.018.048.088.61011.615.14
请观察表中y值随x值变化的特点,完成以下的问题.
(1)函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)上递减;函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(2,+∞)上递增.当x=2时,y最小=8.
(2)证明:函数$f(x)=2x+\frac{8}{x}(x>0)$在区间(0,2)递减.
(3)思考:函数y=2x+$\frac{8}{x}$时,有最值吗?是最大值还是最小值?此时x为何值?(直接回答结果,不需证明)

查看答案和解析>>

同步练习册答案