分析 (1)求出函数的导数,根据f(2)=0,g(2)=0,f'(2)=g'(2),得到关于a,b,c的方程组,解出即可;
(2)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可.
解答 解:(1)f'(x)=6x2+a,g'(x)=2bx+c,
依题意f(2)=0,g(2)=0,f'(2)=g'(2),
∴$\left\{\begin{array}{l}16+2a=0\\ 4b+2c=0\\ 24+a=4b+c\end{array}\right.$∴$\left\{\begin{array}{l}a=-8\\ b=8\\ c=-16\end{array}\right.$,
∴f(x)=2x3-8x,g(x)=8x2-16x.
公切线方程为y=16(x-2),即y=16x-32.
(2)$F(x)=-2lnx+\frac{1}{2}{x^2}-x(x>0)$,
∴$F'(x)=-\frac{2}{x}+x-1$.
令$\left\{\begin{array}{l}F'(x)>0\\ x>0\end{array}\right.$得x>2,
令$\left\{\begin{array}{l}F'(x)<0\\ x>0\end{array}\right.$得0<x<2,
∴F(x)的单调增区间为(2,+∞),单调减区间为(0,2).
点评 本题考查了函数的单调性、最值问题,考查导数的应用以及切线方程,求函数的解析式问题,是一道中档题.
科目:高中数学 来源: 题型:选择题
| A. | m<-1 | B. | m≥$\frac{2\sqrt{3}}{3}$ | C. | m≤-$\frac{2\sqrt{3}}{3}$ | D. | m≥$\frac{2\sqrt{3}}{3}$或m≤-$\frac{2\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0秒、2秒或4秒 | B. | 0秒、2秒或16秒 | C. | 0秒、4秒或8秒 | D. | 2秒、8秒或16秒 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com